
Advanced Lattice Sieving on GPUs,
with Tensor Cores

Léo Ducas, Marc Stevens, Wessel van Woerden (CWI).



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.

• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.

• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.

• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?

• Including more advanced sieving techniques.
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.

• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.

Contributions
• First GPU implementation using all state-of-the-art sieving techniques.

• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.

Contributions
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.

• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.

Contributions
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.

• First optimized implementation of the asymptotic best known sieve [BDGL].



1 / 25

Overview

• Most NIST PQC finalists (5/7) are based on hard lattice problems.
• Practical cryptanalysis is important to pick concrete parameters.
• Lattice sieving algorithms have the best practical and asymptotic runtime.
• How fit are (different) sieving algorithms for specialized hardware?
• Including more advanced sieving techniques.

Contributions
• First GPU implementation using all state-of-the-art sieving techniques.
• Improves both runtime and energy efficiency by two orders of magnitude.
• Significantly improve several lattice problem records.
• First optimized implementation of the asymptotic best known sieve [BDGL].



2 / 25

Lattice

L := BZd

0 b1

b2



2 / 25

Lattice

L := BZd

0

b1

b2



3 / 25

Shortest Vector Problem

0 λ1(L)



4 / 25

Bounded Distance Decoding

0

t



4 / 25

Bounded Distance Decoding

0

t
c



5 / 25

TU Darmstadt Lattice Challenge

• Gives an indication of the concrete hardness of SVP.

• Given: ‘Random’ d -dimensional lattice L (Goldstein and Mayer)
• Goal: Find a v ∈ L s.t.

‖v‖ ≤ 1.05 · GH(L) ≈ 1.05 · λ1(L).



5 / 25

TU Darmstadt Lattice Challenge

• Gives an indication of the concrete hardness of SVP.
• Given: ‘Random’ d -dimensional lattice L (Goldstein and Mayer)

• Goal: Find a v ∈ L s.t.

‖v‖ ≤ 1.05 · GH(L) ≈ 1.05 · λ1(L).



5 / 25

TU Darmstadt Lattice Challenge

• Gives an indication of the concrete hardness of SVP.
• Given: ‘Random’ d -dimensional lattice L (Goldstein and Mayer)
• Goal: Find a v ∈ L s.t.

‖v‖ ≤ 1.05 · GH(L) ≈ 1.05 · λ1(L).



6 / 25

Lattice Sieving

0

Start with a big list
of N = (4/3)d/2+o(d)

lattice vectors.



6 / 25

Lattice Sieving

0

Start with a big list
of N = (4/3)d/2+o(d)

lattice vectors.

Find pairs of close vectors
to create smaller

lattice vectors
‖vi − vj‖ < max{‖vi‖ , ‖vj‖}

v1

v2



6 / 25

Lattice Sieving

0

Start with a big list
of N = (4/3)d/2+o(d)

lattice vectors.

Find pairs of close vectors
to create smaller

lattice vectors
‖vi − vj‖ < max{‖vi‖ , ‖vj‖}

v1

v2



7 / 25

Graphics Processing Unit (GPU)



7 / 25

Graphics Processing Unit (GPU)

64 FP32 cores
64 INT32 cores
8 Tensor cores.

Thousands of
cores.



7 / 25

Graphics Processing Unit (GPU)

64 FP32 cores
64 INT32 cores
8 Tensor cores.

Thousands of
cores.

Per 32 cores:
Single Instruction

Multiple Data



8 / 25

Tensor Cores

• Very efficient (low precision) matrix multiplication.

• 16-bit precision is good enough.
• Up to 108 16-bit Tflops! [2018 model we used]
• Newest model > 300 16-bit Tflops.
• The current best CPU would reach at most ≈ 5 16-bit Tflops.



8 / 25

Tensor Cores

• Very efficient (low precision) matrix multiplication.
• 16-bit precision is good enough.

• Up to 108 16-bit Tflops! [2018 model we used]
• Newest model > 300 16-bit Tflops.
• The current best CPU would reach at most ≈ 5 16-bit Tflops.



8 / 25

Tensor Cores

• Very efficient (low precision) matrix multiplication.
• 16-bit precision is good enough.
• Up to 108 16-bit Tflops! [2018 model we used]

• Newest model > 300 16-bit Tflops.
• The current best CPU would reach at most ≈ 5 16-bit Tflops.



8 / 25

Tensor Cores

• Very efficient (low precision) matrix multiplication.
• 16-bit precision is good enough.
• Up to 108 16-bit Tflops! [2018 model we used]
• Newest model > 300 16-bit Tflops.

• The current best CPU would reach at most ≈ 5 16-bit Tflops.



8 / 25

Tensor Cores

• Very efficient (low precision) matrix multiplication.
• 16-bit precision is good enough.
• Up to 108 16-bit Tflops! [2018 model we used]
• Newest model > 300 16-bit Tflops.
• The current best CPU would reach at most ≈ 5 16-bit Tflops.



9 / 25

GPU: pros and cons

Cons Pros

Not versatile.



9 / 25

GPU: pros and cons

Cons Pros

Not versatile.

‘External’ device.



9 / 25

GPU: pros and cons

Cons Pros

Not versatile.

‘External’ device.

Memory bottlenecks often
limit actual performance.



9 / 25

GPU: pros and cons

Cons Pros

Not versatile.

‘External’ device.

Memory bottlenecks often
limit actual performance.

Hard to adapt algorithms.



9 / 25

GPU: pros and cons

Cons Pros

Not versatile.

‘External’ device.

Memory bottlenecks often
limit actual performance.

Hard to adapt algorithms.

Incredible
performance.



9 / 25

GPU: pros and cons

Cons Pros

Not versatile.

‘External’ device.

Memory bottlenecks often
limit actual performance.

Hard to adapt algorithms.

Incredible
performance.

Energy
efficient.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.

• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days

• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.
• Advanced sieving: Combines all state-of-the-art results/‘tricks’.

• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days

• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.
• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).

• SVP record at dimension 155 in ±14 days

• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.
• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days

• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.
• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days
• 4× 18 cpu cores.

• ≈ 256GiB memory.
• Enumeration: dimension 152 using 800.000 core hours!.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.
• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days
• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.



10 / 25

G6K, Albrecht et al. 2019

• Open source sieving framework/implementation.
• Advanced sieving: Combines all state-of-the-art results/‘tricks’.
• Fully parallel (CPU, single machine).
• SVP record at dimension 155 in ±14 days
• 4× 18 cpu cores.
• ≈ 256GiB memory.

• Enumeration: dimension 152 using 800.000 core hours!.



Advanced Sieving on GPUs



11 / 25

Sieving Process

Bucketing Reducing Insertion

Database

Loop until target saturation achieved



12 / 25

Bucketing

0 c

Partition the sphere.



12 / 25

Bucketing

0 c

Partition the sphere.

Only check all pairs
within each bucket.



12 / 25

Bucketing

0 c

Partition the sphere.

Only check all pairs
within each bucket.

Increases reduction
probability per pair.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).

• [BGJ1] Random spherical cones.

•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.

•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.

• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).

• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.

• Compute inner products with lattice vectors: Tensor cores!
• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).

• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).
• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!

• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).
• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).

• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).
• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.

• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).
• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.

• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



13 / 25

Bucketing

• No bucketing: time N2 = (4/3)d+o(d) = 20.415d+o(d).
• [BGJ1] Random spherical cones.
•
√

N buckets of size
√

N.
• time 20.349d+o(d).
• Trick: Replace random directions with random lattice vectors.
• Compute inner products with lattice vectors: Tensor cores!

• [BDGL] Structured spherical cones (product code).
• Nk/(k+1) buckets of size N1/(k+1) ← A lot of small buckets!
• time 20.292d+o(d) for k = θ(log n).
• Trick: Implicit directions using permutations and Hadamard transform.
• Suitable for CPU (AVX2) and GPU.
• AVX2 CPU implementation merged into G6K, fastest CPU sieve.



14 / 25

Bucketing Quality



15 / 25

Reducing

• For each pair v,w in a bucket check if ‖v ± w‖ < C .

• ‖v ± w‖2 = ‖v‖2 + ‖w‖2 ± 2〈v,w〉.
• Need to compute pairwise inner products 〈v,w〉: Tensor cores!.
• Sparse output: only return successful pairs.
• FLOP: O(d · B2), data: O(d · B), ratio improves for larger bucket size B.



15 / 25

Reducing

• For each pair v,w in a bucket check if ‖v ± w‖ < C .
• ‖v ± w‖2 = ‖v‖2 + ‖w‖2 ± 2〈v,w〉.

• Need to compute pairwise inner products 〈v,w〉: Tensor cores!.
• Sparse output: only return successful pairs.
• FLOP: O(d · B2), data: O(d · B), ratio improves for larger bucket size B.



15 / 25

Reducing

• For each pair v,w in a bucket check if ‖v ± w‖ < C .
• ‖v ± w‖2 = ‖v‖2 + ‖w‖2 ± 2〈v,w〉.
• Need to compute pairwise inner products 〈v,w〉: Tensor cores!.

• Sparse output: only return successful pairs.
• FLOP: O(d · B2), data: O(d · B), ratio improves for larger bucket size B.



15 / 25

Reducing

• For each pair v,w in a bucket check if ‖v ± w‖ < C .
• ‖v ± w‖2 = ‖v‖2 + ‖w‖2 ± 2〈v,w〉.
• Need to compute pairwise inner products 〈v,w〉: Tensor cores!.
• Sparse output: only return successful pairs.

• FLOP: O(d · B2), data: O(d · B), ratio improves for larger bucket size B.



15 / 25

Reducing

• For each pair v,w in a bucket check if ‖v ± w‖ < C .
• ‖v ± w‖2 = ‖v‖2 + ‖w‖2 ± 2〈v,w〉.
• Need to compute pairwise inner products 〈v,w〉: Tensor cores!.
• Sparse output: only return successful pairs.
• FLOP: O(d · B2), data: O(d · B), ratio improves for larger bucket size B.



16 / 25

Amortizing data throughput

• Small buckets are memory bound.
• Large buckets to reach optimal performance.



16 / 25

Amortizing data throughput

• Small buckets are memory bound.

• Large buckets to reach optimal performance.



16 / 25

Amortizing data throughput

• Small buckets are memory bound.
• Large buckets to reach optimal performance.



17 / 25

BGJ1 vs BDGL



18 / 25

Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).

• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.
• On the fly lifting: lift any shortish vector we encounter.
• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?



18 / 25

Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).
• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.
• On the fly lifting: lift any shortish vector we encounter.
• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?



18 / 25

Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).
• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.
• On the fly lifting: lift any shortish vector we encounter.
• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?



18 / 25

Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).
• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.

• On the fly lifting: lift any shortish vector we encounter.
• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?



18 / 25

Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).
• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.
• On the fly lifting: lift any shortish vector we encounter.

• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?



18 / 25

Dimensions for Free [Duc18]

• Sieve in a projected sublattice πl (L) (projected away from first l basis vectors).
• Lift the database back to the full lattice [Babai lifting].

1 dl

• Finds the shortest vector for l = O
(

d
log(d)

)
.

• Progressive sieving: decrease l step-by-step.
• On the fly lifting: lift any shortish vector we encounter.
• Can we efficiently detect if vi − vj might lift to a short vector [BDD problem]?



19 / 25

Dual Hash

0

D := {z ∈ Rl : 〈x, z〉 ∈ Z for all x ∈ L}



19 / 25

Dual Hash

〈x, z〉 = 2
〈x, z〉 = 1

〈x, z〉 = 0

0
z

D := {z ∈ Rl : 〈x, z〉 ∈ Z for all x ∈ L}



19 / 25

Dual Hash

〈x, z〉 = 2
〈x, z〉 = 1

〈x, z〉 = 0
〈t, z〉

0
z

t
c

D := {z ∈ Rl : 〈x, z〉 ∈ Z for all x ∈ L}



20 / 25

Dual Hash

• For short dual vectors z1, . . . , zk ∈ D we define the dual hash

H(t) := (〈t, zi〉)i .

• If dist(L, t) is small, then dist(Zk ,H(t)) is small.
• For l = 16, k = 48 seems enough for a strong correlation.
• H(ti − tj ) = H(ti )− H(tj ), so O(k) operations per pair.
• Suitable for GPUs.



20 / 25

Dual Hash

• For short dual vectors z1, . . . , zk ∈ D we define the dual hash

H(t) := (〈t, zi〉)i .

• If dist(L, t) is small, then dist(Zk ,H(t)) is small.

• For l = 16, k = 48 seems enough for a strong correlation.
• H(ti − tj ) = H(ti )− H(tj ), so O(k) operations per pair.
• Suitable for GPUs.



20 / 25

Dual Hash

• For short dual vectors z1, . . . , zk ∈ D we define the dual hash

H(t) := (〈t, zi〉)i .

• If dist(L, t) is small, then dist(Zk ,H(t)) is small.
• For l = 16, k = 48 seems enough for a strong correlation.

• H(ti − tj ) = H(ti )− H(tj ), so O(k) operations per pair.
• Suitable for GPUs.



20 / 25

Dual Hash

• For short dual vectors z1, . . . , zk ∈ D we define the dual hash

H(t) := (〈t, zi〉)i .

• If dist(L, t) is small, then dist(Zk ,H(t)) is small.
• For l = 16, k = 48 seems enough for a strong correlation.
• H(ti − tj ) = H(ti )− H(tj ), so O(k) operations per pair.

• Suitable for GPUs.



20 / 25

Dual Hash

• For short dual vectors z1, . . . , zk ∈ D we define the dual hash

H(t) := (〈t, zi〉)i .

• If dist(L, t) is small, then dist(Zk ,H(t)) is small.
• For l = 16, k = 48 seems enough for a strong correlation.
• H(ti − tj ) = H(ti )− H(tj ), so O(k) operations per pair.
• Suitable for GPUs.



21 / 25

Dual Hash



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :

• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)

• [〈y, b̃1〉/
∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)

• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)

• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)

• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)

• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)

• Popcount (d/4)
• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.

• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.

• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



22 / 25

Saving Memory

• G6K stores lot’s of information per vector y =
∑d

i=1 xi bi :
• [x1, . . . , xd ]. (2d)
• [〈y, b̃1〉/

∥∥∥b̃1

∥∥∥ , . . . , 〈y, b̃d〉/
∥∥∥b̃d

∥∥∥]. (4d)
• ‖y‖2. (8)
• Unique Identifier (8)
• Lift target t. (4l)
• Dual Hash (4l)
• Popcount (d/4)

• Remove all except x, ‖y‖2 and unique identifier.
• Reduces memory by ±60%.
• Compute everything on the GPU, overhead of O(B · d2) for a bucket size B.



23 / 25

New SVP records

Dimension 180!

	0.01

	0.1

	1

	10

	100

	1000

	130 	140 	150 	160 	170 	180 	190

W
al

lti
m

e	
(d

ay
s)

Dimension

Enum
G6K

Our	Work

maximum RAM size of 1.5TB reached for 180.



24 / 25

Conclusion

• Lattice sieving algorithms can efficiently be implemented on GPUs.

• Memory bottlenecks disappear when buckets are large enough.
• Extra benefit of saving memory with negligible overhead.
• BDGL beats BGJ1 in practice on CPUs, but the cross-over for GPUs lies much

higher.



24 / 25

Conclusion

• Lattice sieving algorithms can efficiently be implemented on GPUs.
• Memory bottlenecks disappear when buckets are large enough.

• Extra benefit of saving memory with negligible overhead.
• BDGL beats BGJ1 in practice on CPUs, but the cross-over for GPUs lies much

higher.



24 / 25

Conclusion

• Lattice sieving algorithms can efficiently be implemented on GPUs.
• Memory bottlenecks disappear when buckets are large enough.
• Extra benefit of saving memory with negligible overhead.

• BDGL beats BGJ1 in practice on CPUs, but the cross-over for GPUs lies much
higher.



24 / 25

Conclusion

• Lattice sieving algorithms can efficiently be implemented on GPUs.
• Memory bottlenecks disappear when buckets are large enough.
• Extra benefit of saving memory with negligible overhead.
• BDGL beats BGJ1 in practice on CPUs, but the cross-over for GPUs lies much

higher.



25 / 25

Bibliography

• [BGJ15] A. Becker,N. Gama, A. Joux. Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search.
• [BDGL16] A. Becker, L. Ducas, N. Gama, T. Laarhoven. New directions in nearest

neighbor searching with applications to lattice sieving.
• [Duc18] L. Ducas, Shortest vector from lattice sieving: A few dimensions for free.
• [LM18] T. Laarhoven, A. Mariano, Progressive lattice sieving.
• [G6K] M.R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E.W. Postlethwaite, and

M. Stevens, 2019. The general sieve kernel and new records in lattice reduction.


