On the Lattice Isomorphism Problem, Cryptography and the Signature Scheme $\ensuremath{\mathsf{HAWK}}$

Léo Ducas, Eamonn Postlethwaite, Ludo Pulles (CWI, Cryptology Group), Wessel van Woerden (Université de Bordeaux, IMB).

• LWE, SIS, NTRU lattices: versatile, but poor decoding.

- LWE, SIS, NTRU lattices: versatile, but poor decoding.
- Many wonderful lattices exist with great geometric properties.

- LWE, SIS, NTRU lattices: versatile, but poor decoding.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?

- LWE, SIS, NTRU lattices: versatile, but poor decoding.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?

Contributions

• General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.

- LWE, SIS, NTRU lattices: versatile, but poor decoding.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.
- Better lattice \implies better efficiency and security.

- LWE, SIS, NTRU lattices: versatile, but poor decoding.
- Many wonderful lattices exist with great geometric properties.
- Can we use these in cryptography?

Contributions

- General identification, encryption and signature scheme based on the Lattice Isomorphism Problem.
- Better lattice \implies better efficiency and security.
- HAWK: a simple and efficient signature scheme from \mathbb{Z}^n .

Lattice $\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n$

Lattice $\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n$

 $rac{ ext{First minimum}}{\lambda_1(\mathcal{L}):=\min\limits_{x\in\mathcal{L}\setminus\{0\}}\|x\|_2}$

2 / 18

Lattice $\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n$

$$\lambda_1(\mathcal{L}) := \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$$

$$\frac{\underline{\text{Determinant}}}{\det(\mathcal{L}) := \operatorname{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|}$$

Lattice $\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n$

 $egin{aligned} rac{ ext{First minimum}}{\lambda_1(\mathcal{L}) := \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2 \end{aligned}$

$$\frac{\texttt{Determinant}}{\det(\mathcal{L}) := \texttt{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|}$$

$$\lambda_1(\mathcal{L}) \leq \underbrace{\frac{2 \underbrace{\det(\mathcal{L})^{1/n}}}_{\text{vol}(\mathcal{B}^n)^{1/n}}}_{\text{Mk}(\mathcal{L})} \leq \sqrt{n} \det(\mathcal{L})^{1/n}}$$

2 / 18

Find a *shortest* <u>nonzero</u> vector $v \in \mathcal{L}$ of length $\lambda_1(\mathcal{L}) \leq \mathsf{Mk}(\mathcal{L})$.

3 / 18

3 / 18

3 / 18

4 / 18

Good basis (Secret key)

Babai's nearest plane algorithm

Encrypt by adding a small error

Good basis (Secret key)

Bad basis (Public key)

Decrypt using the good basis

Large gap Current lattice based crypto relies on hardness of decoding with $gap(\mathcal{L},\rho) \geq \Omega(\sqrt{n}).$ Broken by SVP in dimension $\beta \leq n/2 + o(n)$, e.g. $n = 1024 \implies \beta \approx 450.$

Large gap

Current lattice based crypto relies on hardness of decoding with

 $\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$, e.g. $n = 1024 \implies \beta \approx 450$.

An example: Prime Lattice [CR88] Let p_1, \ldots, p_n be distinct small primes not dividing m, we define:

$$\mathcal{L}_{ ext{prime}} := \{x = (x_1, \dots, x_n) \in \mathbb{Z}^n : \prod_i p_i^{x_i} = 1 mod m\}.$$

Large gap

Current lattice based crypto relies on hardness of decoding with

 $\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$, e.g. $n = 1024 \implies \beta \approx 450$.

An example: Prime Lattice [CR88]

Let p_1, \ldots, p_n be distinct small primes not dividing m, we define:

$$\mathcal{L}_{ ext{prime}} := \{x = (x_1, \dots, x_n) \in \mathbb{Z}^n : \prod_i p_i^{x_i} = 1 mod m\}.$$

• Efficiently decode up to large radius ho by trial division.

Large gap

Current lattice based crypto relies on hardness of decoding with

 $\operatorname{gap}(\mathcal{L}, \rho) \geq \Omega(\sqrt{n}).$

Broken by SVP in dimension $\beta \leq n/2 + o(n)$, e.g. $n = 1024 \implies \beta \approx 450$.

An example: Prime Lattice [CR88]

Let p_1, \ldots, p_n be distinct small primes not dividing m, we define:

$$\mathcal{L}_{ ext{prime}} := \{x = (x_1, \ldots, x_n) \in \mathbb{Z}^n : \prod_i p_i^{x_i} = 1 mod m\}.$$

- Efficiently decode up to large radius ho by trial division.
- With the right parameters $gap(\mathcal{L}_{prime}, \rho) = \Theta(\log(n))$ [DP19].

6 / 18

Lattice Isomorphism Problem

LIP

Given $B, B' \in GL_n(\mathbb{R})$ of isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

Lattice Isomorphism Problem

LIP

Given $B, B' \in GL_n(\mathbb{R})$ of isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

- The lattice analogue of 'vintage' McEliece $G' = P \cdot G \cdot S$,
- and Oil and Vinegar $\mathcal{P} = \mathcal{Q} \circ \mathcal{S}$.

Lattice Isomorphism Problem

LIP

Given $B, B' \in GL_n(\mathbb{R})$ of isomorphic lattices, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in GL_n(\mathbb{Z})$ s.t. $B' = O \cdot B \cdot U$.

- The lattice analogue of 'vintage' McEliece $G' = P \cdot G \cdot S$,
- and Oil and Vinegar $\mathcal{P} = \mathcal{Q} \circ \mathcal{S}$.
- Best known attacks require to <u>solve SVP</u>.

Algorithms

- $Min(\mathcal{L}(B')) = O \cdot Min(\mathcal{L}(B)).$
- Best practical algorithm: backtrack search all isometries between the sets of short vectors.
- Best proven algorithm uses short primal and dual vectors $(n^{O(n)}$ time and space).

$B' = \mathbf{O} \cdot B \cdot \mathbf{U}.$

Two Challenges

$B' = O \cdot B \cdot U.$
Sidestep real values!
 $O \in \mathcal{O}_n(\mathbb{R})$

Two Challenges

Sample $U \in \operatorname{GL}_n(\mathbb{Z})$ s.t. B' is independent of B. $B' = \mathbf{O} \cdot B \cdot \mathbf{U}.$ Sidestep real values! $\mathbf{O} \in \mathcal{O}_n(\mathbb{R})$

Quadratic Forms

Orthonormal $O \in \mathcal{O}_n(\mathbb{R})$
Quadratic Forms

Orthonormal $O \in \mathcal{O}_n(\mathbb{R})$

 $(B')^t B' = U^t B^t O^t O B U = U^t B^t B U.$

Quadratic Forms

Orthonormal
$$O \in \mathcal{O}_n(\mathbb{R})$$

 $(B')^t B' = U^t B^t O^t O B U = U^t B^t B U.$

 $Q := B^t B \in \mathcal{S}_n^{>0}$

Lattices \implies Quadratic Forms $(\mathcal{L} \subset \mathbb{R}^n, \langle x, y \rangle) \implies (\mathbb{Z}^n, \langle x, y \rangle_Q := x^t Q y)$ Keep the geometry, forget the embedding. Quadratic Forms

Orthonormal
$$O \in \mathcal{O}_n(\mathbb{R})$$

 $(B')^t B' = U^t B^t O^t O B U = U^t B^t B U.$

 $Q := B^t B \in \mathcal{S}_n^{>0}$

Lattices \implies Quadratic Forms $(\mathcal{L} \subset \mathbb{R}^n, \langle x, y \rangle) \implies (\mathbb{Z}^n, \langle x, y \rangle_Q := x^t Q y)$ Keep the geometry, forget the embedding.

Find $U \in \operatorname{GL}_n(\mathbb{Z})$ s.t. $Q' = U^t Q U$.

Unimodular $U \in \operatorname{GL}_n(\mathbb{Z})$

Unimodular $U \in \operatorname{GL}_n(\mathbb{Z})$

Equivalence class $[Q] := \{ U^t Q U : U \in GL_n(\mathbb{Z}) \}.$

Def: Distribution $\mathcal{D}_{\sigma}([Q])$ over [Q],

Unimodular $U \in \operatorname{GL}_n(\mathbb{Z})$

Equivalence class $[Q] := \{ U^t Q U : U \in GL_n(\mathbb{Z}) \}.$

Def: Distribution $\mathcal{D}_{\sigma}([Q])$ over [Q],

$$\begin{array}{l} \text{Efficient sampler } (\textit{Q}',\textit{U}) \leftarrow \text{Sample}_{\sigma}(\textit{Q}) \\ \text{s.t.} \quad \textit{Q}' \sim \mathcal{D}_{\sigma}([\textit{Q}]) \text{ and } \textit{Q}' = \textit{U}^t\textit{Q}\textit{U}. \end{array}$$

Q' only depends on the class [Q] and not on Q itself.

Unimodular $U \in \operatorname{GL}_n(\mathbb{Z})$

Equivalence class $[Q] := \{ U^t Q U : U \in GL_n(\mathbb{Z}) \}.$

Def: Distribution $\mathcal{D}_{\sigma}([Q])$ over [Q],

$$\begin{array}{l} \text{Efficient sampler } (\textit{Q}',\textit{U}) \leftarrow \text{Sample}_{\sigma}(\textit{Q}) \\ \text{s.t.} \quad \textit{Q}' \sim \mathcal{D}_{\sigma}([\textit{Q}]) \text{ and } \textit{Q}' = \textit{U}^t\textit{Q}\textit{U}. \end{array}$$

Q' only depends on the class [Q] and not on Q itself.

 \implies average-case LIP, ZKPoK, identification scheme.

Unimodular $U \in \operatorname{GL}_n(\mathbb{Z})$

Equivalence class $[Q] := \{ U^t Q U : U \in GL_n(\mathbb{Z}) \}.$

Def: Distribution $\mathcal{D}_{\sigma}([Q])$ over [Q],

$$\begin{array}{rl} \text{Efficient sampler } ({\it Q}',{\it U}) \leftarrow \text{Sample}_{\sigma}({\it Q}) \\ \text{s.t.} \quad {\it Q}' \sim {\cal D}_{\sigma}([{\it Q}]) \text{ and } {\it Q}' = {\it U}^t {\it Q} {\it U}. \end{array}$$

Q' only depends on the class [Q] and not on Q itself.

 \implies average-case LIP, ZKPoK, identification scheme.

 \implies Worst-case to average-case reduction over [Q].

• ac-LIP $_{\sigma}^{Q}$: given Q and $Q' \leftarrow \mathcal{D}_{\sigma}([Q])$, recover $U \in \operatorname{GL}_{n}(\mathbb{Z})$.

- ac-LIP $^Q_\sigma\colon$ given Q and $Q'\leftarrow \mathcal{D}_\sigma([Q])$, recover $U\in {
 m GL}_n(\mathbb{Z})$.
- ZKPoK: Given public $Q_0, Q_1 \in [Q]$, prove knowledge of a U s.t. $Q_1 = U^t Q_0 U$, without revealing U.

$$Q_0 \xrightarrow{U} Q_1$$
 $V \bigvee \downarrow \downarrow' U^{-1}V$
 $Q' \sim \mathcal{D}_{\sigma}([Q])$

 $(Q', V) \leftarrow \texttt{Sample}_{\sigma}(Q_0)$

- ac-LIP $^{\boldsymbol{Q}}_{\sigma}$: given \boldsymbol{Q} and $\boldsymbol{Q}' \leftarrow \mathcal{D}_{\sigma}([\boldsymbol{Q}])$, recover $\boldsymbol{U} \in \operatorname{GL}_{\boldsymbol{n}}(\mathbb{Z})$.
- ZKPoK: Given public $Q_0, Q_1 \in [Q]$, prove knowledge of a U s.t. $Q_1 = U^t Q_0 U$, without revealing U.

 $(Q', V) \leftarrow \texttt{Sample}_{\sigma}(Q_0)$

• Worst-case to average-case reduction:

$$Q \xleftarrow{WC} Q'$$

$$\stackrel{\overset{WC}{\longrightarrow}}{\operatorname{AC}} Q'$$

$$\downarrow U'$$

$$Q''$$

 $(Q'', U') \leftarrow \texttt{Sample}_{\sigma}(Q')$

11 / 18

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Best attack: generic lattice reduction.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Best attack: generic lattice reduction.

SVP attack: $gap(\mathcal{L})$.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Best attack: generic lattice reduction.

SVP attack: $gap(\mathcal{L})$. <u>Dual</u> SVP attack: $gap(\mathcal{L}^*)$.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Best attack: generic lattice reduction.

SVP attack: $gap(\mathcal{L})$. <u>Dual</u> SVP attack: $gap(\mathcal{L}^*)$. Decoding attack (BDD): $gap(\mathcal{L}, \rho)$.

Decodable Lattices

	Primal	Dual	Decoding
Decodable Lattice	$gap(\mathcal{L})$	$gap(\mathcal{L}^*)$	$gap(\mathcal{L}, ho)$
Random Lattice	Θ(1)	Θ(1)	2 ^{⊖(n)}
\mathbb{Z}^{n}	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
NTRU [HPS98]	Ω(α)	Ω(α)	$\Omega(n/lpha)$
LWE [Ajt99, AP11, MP12]	Ω(1)	Ω(α)	$\Omega(n/lpha)$
Prime Lattice [CR88, DP19]	$\Theta(\log n)$	$\Omega(\sqrt{n})$	$\Theta(\log n)$
Barnes-Sloane [MP21]	$\Theta(\sqrt{\log n})$	$\Omega(\sqrt{n})$	$\Theta(\sqrt{\log n})$
Reed-Solomon [BP22]	$\Theta(\sqrt{\log n})$	$\Omega(\sqrt{n})$	$\Theta(\sqrt{\log n})$
Barnes-Wall [MN08]	$\Theta(\sqrt[4]{n})$	$\Theta(\sqrt[4]{n})$	$\Theta(\sqrt[4]{n})$

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

\mathbb{Z}^n : similar geometry to NTRU, LWE, but extremely simple and efficient. $n = 1024 \implies \beta \approx 440$

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

\mathbb{Z}^n : similar geometry to NTRU, LWE, but extremely simple and efficient. $n = 1024 \implies \beta \approx 440$

 BW^n : better geometry and decoding $O(\sqrt[4]{n})$, $n = 1024 \implies \beta \approx 710$.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

\mathbb{Z}^n : similar geometry to NTRU, LWE, but extremely simple and efficient. $n = 1024 \implies \beta \approx 440$

 BW^n : better geometry and decoding $O(\sqrt[4]{n})$, $n = 1024 \implies \beta \approx 710$.

?: gaps
$$\leq$$
 poly-log(*n*),
 $\beta \approx n$.

14 / 18

FALCON (and MITAKA) use the hash-and-sign design with NTRU lattices.

Sign(m):

- Hash m to a target t.
- (Gaussian) sample a nearby lattice point *s* using a good basis.

- Hash m to a target t.
- Check $s \in \mathcal{L}$ and $\|s t\|$ small.

FALCON (and MITAKA) use the hash-and-sign design with NTRU lattices.

Sign(m):

- Hash m to a target t.
- (Gaussian) sample a nearby lattice point *s* using a good basis.

- Hash m to a target t.
- Check $s \in \mathcal{L}$ and $\|s-t\|$ small.

FALCON (and MITAKA) use the hash-and-sign design with NTRU lattices.

Sign(m):

- Hash m to a target t.
- (Gaussian) sample a nearby lattice point *s* using a good basis.

- Hash m to a target t.
- Check $s \in \mathcal{L}$ and $\|s t\|$ small.

FALCON (and MITAKA) use the hash-and-sign design with NTRU lattices.

Sign(m):

- Hash m to a target t.
- (Gaussian) sample a nearby lattice point *s* using a good basis.

Complicated and slow!

- Hash m to a target t.
- Check $s \in \mathcal{L}$ and $\|s t\|$ small.

Idea: Gaussian sampling in (cosets of) \mathbb{Z}^n is (almost) trivial.

Idea: Gaussian sampling in (cosets of) \mathbb{Z}^n is (almost) trivial.

How to make it competitive?

Idea: Gaussian sampling in (cosets of) \mathbb{Z}^n is (almost) trivial.

How to make it competitive?

1. We add structure: module-LIP.

Idea: Gaussian sampling in (cosets of) \mathbb{Z}^n is (almost) trivial.

How to make it competitive?

- 1. We add structure: module-LIP.
- 2. We compress keys and signatures.

Idea: Gaussian sampling in (cosets of) \mathbb{Z}^n is (almost) trivial.

How to make it competitive?

- 1. We add structure: module-LIP.
- 2. We compress keys and signatures.
- 3. Only hash to targets in $\frac{1}{2}\mathbb{Z}^n$.

Performance of Hawk

• HAWK has an *isochronous* implementation in C.

	Falcon-512	Hawk-512		Falcon-1024	Hawk-1024	
KeyGen * Sign * Verify *	7.95 ms 193 բs 50 բs	4.25 ms 50 բs 19 բs	↓ /1.9 ↓ /3.9 ↓ /2.6	23.60 ms 382 μs 99 μs	17.88 ms 99 բs 46 բs	↓ /1.3 ↓ /3.9 ↓ /2.2
sk pk sig	$1281 \\ 897 \\ 652 \pm 3$	$1153 \\ 1006 \pm 6 \\ 542 \pm 4$	↓ /1.1 ↑ ×1.2 ↓ /1.20	2305 1793 1261 ± 4	$2561 \\ 2329 \pm 11 \\ 1195 \pm 6$	↑ ×1.1 ↑ ×1.29 ↓ /1.06

Table: Performance on an i5-4590 @3.30GHz CPU.

*: AVX2 implementation using floats.

Performance of Hawk

- HAWK has an *isochronous* implementation in C.
- HAWK remains fast when floating points are unavailable.

	Falcon-512	Hawk-512		Falcon-1024	Hawk-1024	
KeyGen * KeyGen	7.95 ms 19.32 ms	4.25 ms 13.14 ms	↓ /1.9 ↓ /1.5	23.60 ms 54.65 ms	17.88 ms 41.39 ms	↓ /1.3 ↓ /1.3
Sign * Sign	193	50	↓ /3.9 ↓ /15	382	99	↓ /3.9 ↓ /15
Verify * Verify	50 µ s 53 µs	19 µs 178 µs	↓ / 2.6 ↑ × 3.4	99 µs 105 µs	46	↓ /2.2 ↑ ×3.7
sk pk sig	$1281 \\ 897 \\ 652 \pm 3$	$1153 \\ 1006 \pm 6 \\ 542 \pm 4$	$egin{array}{c} \downarrow /1.1 \ \uparrow imes 1.2 \ \downarrow /1.20 \end{array}$	2305 1793 1261 ± 4	$2561 \\ 2329 \pm 11 \\ 1195 \pm 6$	↑ ×1.1 ↑ ×1.29 ↓ /1.06

Table: Performance on an i5-4590 @3.30GHz CPU.

*: AVX2 implementation using floats.

Any lattice \implies Identification scheme.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Gaussian sampleable lattice $\mathcal{L} \implies$ Signature scheme.

Any lattice \implies Identification scheme.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Gaussian sampleable lattice $\mathcal{L} \implies$ Signature scheme.

 \mathbb{Z}^n is enough to match LWE and NTRU.

Any lattice \implies Identification scheme.

Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Gaussian sampleable lattice $\mathcal{L} \implies$ Signature scheme.

 \mathbb{Z}^n is enough to match LWE and NTRU.

End goal: do even better.

Any lattice \implies Identification scheme. Decodable lattice $\mathcal{L} \implies$ Encryption scheme.

Gaussian sampleable lattice $\mathcal{L} \implies$ Signature scheme.

 \mathbb{Z}^n is enough to match LWE and NTRU.

End goal: do even better. Thanks! :)