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Motivation

• Most NIST PQC finalists (5/7) are based on hard lattice problems.

• LWE, SIS, NTRU lattices, while versatile, have poor decoding
properties.
• Many wonderful lattices exist with great geometric properties.
• Can we use these in cryptography?
• Many ad-hoc methods have been broken by ad-hoc attacks.

• General identification, encryption and signature scheme based on
the Lattice Isomorphism Problem.
• Better lattices =⇒ better efficiency and security.
• Lots of open questions.
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Lattices

Lattice L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn

0 b1
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Lattices

Lattice L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn

First minimum
λ1(L) := min

x∈L\{0}
‖x‖2

Determinant
det(L) := vol(Rn/L) = | det(B)|

Minkowski’s Theorem

λ1(L) ≤ 2
det(L)1/n

vol(Bn)1/n︸ ︷︷ ︸
Mk(L)

≤
√

n det(L)1/n

0
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Hard Problems

Lattice L ⊂ Rn

SVP
Find a shortest nonzero

vector v ∈ L of length λ1(L) ≤ Mk(L).
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Hard Problems

Lattice L ⊂ Rn

SVP
Find a shortest nonzero

vector v ∈ L of length λ1(L) ≤ Mk(L).

BDD
Given a target t = v + e ∈ Rn with

v ∈ L and ‖e‖ < ρ ≤ 1
2λ1(L) ≤ 1

2 Mk(L),
recover the closest vector v ∈ L.

Hardness depends on the gap
gap(L) := Mk(L)

λ1(L)
or gap(L, ρ) := Mk(L)

ρ
.

(state-of-art heuristic algorithms)
[ADPS16], [AGVW17], [PV21]

0
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How to do encryption?

Good basis (Secret key) Bad basis (Public key)

Hard

B B′ = B · U, U ∈ GLd (Z)
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How to do encryption?

Good basis (Secret key) Bad basis (Public key)

Babai’s nearest plane algorithm

0 b1

b2

0

b′1

b′2



4 / 19

How to do encryption?

Good basis (Secret key) Bad basis (Public key)

0 0

m



4 / 19

How to do encryption?

Good basis (Secret key) Bad basis (Public key)

Encrypt by adding a small error

0 0

m

c = m + e
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How to do encryption?

Good basis (Secret key) Bad basis (Public key)

Decrypt using the good basis

0

c
m

0
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Remarkable Lattices

Large gap
Current lattice based crypto relies on hardness of decoding with

gap(L, ρ) ≥ Ω(
√

n).

Broken by SVP in dimension β ≤ n/2 + o(n).

An example: Prime Lattice [CR88]
Let p1, . . . , pn be distinct small primes not dividing m, we define:

Lprime := {x = (x1, . . . , xn) ∈ Zn :
∏

i
pxi

i = 1 mod m}.

• Efficiently decode up to large radius ρ by trial division.
• With the right parameters gap(Lprime, ρ) = Θ(log(n)) [DP19].
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How to hide the remarkable lattice?

Good lattice (Secret key) Bad basis (Public key)

B B′ = O · B · U

0 b1

b2

0

b′1

b′2

O ∈ On(R)

(Secret key)

Lattice Isomorphism Problem
Given B,B′ ∈ GLn(R), find O ∈ On(R)
and U ∈ GLn(Z) s.t. B′ = O · B · U.
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Lattice Isomorphism Problem

LIP
Given isomorphic B,B′ ∈ GLn(R), find O ∈ On(R) and U ∈ GLn(Z)
s.t. B′ = O · B · U.

• The lattice analogue of ‘vintage’ McEliece G ′ = P · G · S.
• At least as hard as Graph Isomorphism (doesn’t say much..).

Algorithms
• Min(L(B′)) = O · Min(L(B)).
• Best practical algorithm: backtrack search all isometries between
the sets of short vectors.
• Best proven algorithm uses short primal and dual vectors
(nO(n) time and space).
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Quadratic Forms

O ∈ On(R)

Computing with reals is a complex problem.

• B′ = OBU =⇒ (B′)tB′ = UtBtOtOBU = UtBtBU.
• (B′)tB′ = UtBtBU =⇒ ∃O ∈ On(R) : B′ = OBU.
• Q := BtB ∈ S>0

n (R) induces a positive definite quadratic form.
• Lattice Zn with i.p. 〈x, y〉Q = xtQy and norm ‖x‖2

Q := xtQx.
• λ1(Q) := min

x∈Zn\{0}
‖x‖Q.

LIP (restated)
Given equivalent Q,Q′ ∈ S>0

n (R), find U ∈ GLn(Z) s.t. Q′ = UtQU.

• Only work with Q ∈ S>0
n (Z).
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Encryption [informal]

Prerequisite
Let S be a quadratic form with an efficient decoder up to some
radius ρ < λ1(S)/2.

Keygen :

Sample (pk, sk) := (P,U)← Dσ([S]), such that P = UtSU.

Encrypt(P,m) :

c := m + e s.t. ‖e‖P ≤ ρ

Decrypt(U, c) :

m′ := Decode(S,Uc) s.t.
∥∥m′ − Uc

∥∥
S ≤ ρ

m = U−1m′
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Average case instances

• Task: sample a ‘random’ public key P = UtSU together with U?

(R,U)← Dσ([Q]), given S ∈ [Q], σ large enough.
1. Sample n vectors y1, . . . , yn ∈ Zn from DS,σ (discrete gaussian).

Repeat if not linearly independent.

2. Let Y = UT be the unique upper triangular HNF decomposition.

3. Return (R = UtSU,U).

Properties
• R only depends on the class [Q] and σ (ZKPoK, identification).
• Defines an average-case LIP problem ac-LIPS

σ.
• Given any representative we can sample at σ ≥ 2Θ(n) · λn([S])
( =⇒ worst-case to average-case reduction).
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Security Proof

Actual hardness assumption
1. For a uniformly random O ∈ On(R), decoding in O · L0 is hard.

L0 L1 = O · L0
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Distinguishing LIP

∆ LIPQ0,Q1
σ

Given two quadratic forms Q0,Q1 ∈ S>0
n , and Q ∈ Dσ([Qb]) for a

uniform random b ∈ {0, 1}, find b.

L0 O · Lb L1
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Security Proof

Security Assumption [informal]
1. O · L0 is indistinguishable from a random lattice.
2. Decoding in a random lattice is hard.

L0 L1 = O · L0
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Security Proof

Security Assumption [informal]
1. ..indistinguishable from some lattice with a dense sublattice.
2. Decoding in a random lattice is hard.

O · L0 L1
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Cryptanalysis - Invariants

Arithmetic Invariants
• det(Q).
• gcd(Q) := gcd(Qij )i ,j
• gcd{‖x‖2

Q : x ∈ Zn}
• Self dual? (up to scaling)

• Equivalence over R ⊃ Z, U ∈ GLn(R), R ∈ {R,Q,∀p Qp, ∀p Zp}

Definition (Conway Genus)

The Genus of Q ∈ S>0
n (Z) represents the Zp-equivalence classes [Q]Zp

for p = 2 and all primes p| det(Q).

• Covers all above invariants, and is efficiently computable.

Genus attack
If genus(Q0) 6= genus(Q1), then ∆ LIPQ0,Q1 is easy.
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Cryptanalysis - Geometry

• If the genera match, we have to distinguish by geometric
invariants.

SVP Attack
If λ1(Q0) 6= λ1(Q1), then ∆ LIPQ0,Q1 ≤ SVP,
with Minkowski Gap max{gap(Q0), gap(Q1)}.

• Dual LIP: Q = UtQbU ⇔ Q−1 = U−1Q−1
b U−t.

Dual SVP Attack
If λ1(Q−1

0 ) 6= λ1(Q−1
1 ), then ∆ LIPQ0,Q1 ≤ SVP,

with Minkowski Gap max{gap(Q−1
0 ), gap(Q−1

1 )}.

• Dense sublattice attack? (overstretched NTRU)

Open Question
Are there better attacks when the genera match?
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Instantiating (simple)

Theorem [informal]
Let L0 be a decodable lattice, and let L1 be a lattice with a dense
sublattice, then our scheme is CPA-secure if ∆ LIPQ0,Q1 is hard.

• Let L ⊂ Rn/2 be a ρ-decodable lattice with integral gram matrix.
• For some g ∈ Z≥1 we define

L0 := gL ⊕ (g + 1)L & L1 := L ⊕ g(g + 1)L.

• Dense sublattice L ⊂ L1 (set g = Θ (gap(L∗) · gap(L, ρ))).

Cryptanalysis
Invariants: genus(L0) = genus(L1).
SVP: if gap(L) ≤ f , gap(L∗) ≤ f ∗ and gap(L, ρ) ≤ f ′, then

max{gap(L0), gap(L∗0), gap(L1), gap(L∗1)} ≤ O(max(f , f ∗) · f ∗ · f ′)
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Decodable Lattices

Lattice f := gap(L) f ∗ := gap(L∗) f ′ := gap(L, ρ)

Zn Θ(
√

n) Θ(
√

n) Θ(
√

n)

‘Random’ Lattice Θ(1) Θ(1) 2Θ(n)

NTRU, LWE, · · · Θ(1) Θ(1) Ω(
√

n)

Prime Lattice Θ(log n) Ω(
√

n) Θ(log n) [CR88, DP19]

Barnes-Sloane Θ(
√

log n) Ω(
√

n) Θ(
√

log n) [MP20]

Reed-Solomon Θ(
√

log n) Ω(
√

n) Θ(
√

log n) [BP22]

Barnes-Wall Θ( 4√n) Θ( 4√n) Θ( 4√n) [MN08]

Open Question
Can we construct a decodable lattice with max{f , f ∗, f ′} ≤ polylog(n)?
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Future work

Remarkable Lattices
Can we construct a decodable lattice with max{f , f ∗, f ′} ≤ polylog(n)?

LIP to ∆ LIP?
Can we reduce the search version of LIP to the distinguishing
version? (for Zn we can [Szydlo03])

Genus Sampling
Can we sample ‘random’ [Q′] such that genus(Q′) = genus(Q). Is [Q′]
expected to have a good geometry? Is decoding in [Q′] hard?

Module-LIP
LIP is easy for some Ideal lattices [Gentry-Szydlo,
Lenstra-Silverberg]. Is rank k ≥ 2 module-LIP secure?
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Thank you! :)
Full paper at eprint.iacr.org/2021/1332

eprint.iacr.org/2021/1332

