
Lattice cryptography and cryptanalysis

Wessel van Woerden (Université de Bordeaux, IMB, Inria).



1 / 74

Plan

Part I

Lattice theory

▶ Lattices
▶ Hard problems

Cryptography

▶ Trapdoor bases
▶ Encryption, Signature

Cryptanalysis

▶ Lattice Sieving
▶ Basis Reduction

Part II

Lattices used in cryptography

▶ SIS, LWE, decLWE
▶ Security proofs

Hardness Reductions

▶ search to decision
▶ WC to AC reductions

Algebraic Lattices

▶ Ideal and module lattices
▶ NTRU, RLWE, mod-LWE

acknowledgements: many slides adapted from Alice Pellet-Mary!

https://apelletm.pages.math.cnrs.fr/page-perso/research.html



1 / 74

Plan

Part I

Lattice theory

▶ Lattices
▶ Hard problems

Cryptography

▶ Trapdoor bases
▶ Encryption, Signature

Cryptanalysis

▶ Lattice Sieving
▶ Basis Reduction

Part II

Lattices used in cryptography

▶ SIS, LWE, decLWE
▶ Security proofs

Hardness Reductions

▶ search to decision
▶ WC to AC reductions

Algebraic Lattices

▶ Ideal and module lattices
▶ NTRU, RLWE, mod-LWE

acknowledgements: many slides adapted from Alice Pellet-Mary!

https://apelletm.pages.math.cnrs.fr/page-perso/research.html



1 / 74

Plan

Part I

Lattice theory

▶ Lattices
▶ Hard problems

Cryptography

▶ Trapdoor bases
▶ Encryption, Signature

Cryptanalysis

▶ Lattice Sieving
▶ Basis Reduction

Part II

Lattices used in cryptography

▶ SIS, LWE, decLWE
▶ Security proofs

Hardness Reductions

▶ search to decision
▶ WC to AC reductions

Algebraic Lattices

▶ Ideal and module lattices
▶ NTRU, RLWE, mod-LWE

acknowledgements: many slides adapted from Alice Pellet-Mary!
https://apelletm.pages.math.cnrs.fr/page-perso/research.html



Lattice theory



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn

(pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



2 / 74

From codes to lattices

Similarities:

▶ Both are discrete additive groups

▶ Same problems: finding short or close lattice/code points

Differences:

▶ Hamming distance in Fn
q → Euclidean distance in Rn (pictures!)

▶ Code with decoding algorithm → Any lattice and a short basis
(decoding for free!)

most important:
row vectors (xG) → column vectors (Gx)



3 / 74

Lattice

A lattice L ⊂ Rn is a discrete subgroup of Rn.

Discrete
For every v ∈ L there exists an open ball around v

that contains no other elements from L.

Example Z ⊂ R:

−5 −4 −3 −2 −1 0 1 2 3 4 5



4 / 74

Additive

0 v1

v2

v1 + v2

−3v1 + 2v2



4 / 74

Additive

0 v1

v2
v1 + v2

−3v1 + 2v2



4 / 74

Additive

0 v1

v2
v1 + v2

−3v1 + 2v2



5 / 74

First minimum of a lattice

0

λ1



5 / 74

First minimum of a lattice

0

λ1

By the additivity the neighborhood of

every lattice point looks the same.



5 / 74

First minimum of a lattice

0

λ1

By the additivity the neighborhood of

every lattice point looks the same.



5 / 74

First minimum of a lattice

0
λ1

The first minimum λ1(L) of a lattice L is
the length of the shortest nonzero lattice vector:

λ1(L) = min
x∈L\{0}

{∥x∥} > 0.



6 / 74

Volume of a lattice

0

The volume vol(L) of a lattice L is the (co-)volume of any
fundamental area w.r.t. translation of the lattice:

vol(L) = vol(Rn/L) (density(L) = 1/ vol(L))



6 / 74

Volume of a lattice

0

The volume vol(L) of a lattice L is the (co-)volume of any
fundamental area w.r.t. translation of the lattice:

vol(L) = vol(Rn/L) (density(L) = 1/ vol(L))



6 / 74

Volume of a lattice

0

The volume vol(L) of a lattice L is the (co-)volume of any
fundamental area w.r.t. translation of the lattice:

vol(L) = vol(Rn/L) (density(L) = 1/ vol(L))



6 / 74

Volume of a lattice

0

The volume vol(L) of a lattice L is the (co-)volume of any
fundamental area w.r.t. translation of the lattice:

vol(L) = vol(SpanR(L)/L), (density(L) = 1/ vol(L))



7 / 74

Minkowski’s Theorem

1
2 λ1

Minkowski’s Theorem
For a full-rank lattice L ⊂ Rn we have

vol
(

1
2λ1(L) · Bn

)
≤ vol(L)



7 / 74

Minkowski’s Theorem

1
2 λ1

Minkowski’s Theorem
For a full-rank lattice L ⊂ Rn we have

λ1(L) ≤ 2
vol(L)1/n

vol(Bn)1/n︸ ︷︷ ︸
Mk(L)

≈ 2 ·
√

n/2πe · vol(L)1/n



8 / 74

Basis Representation

Lattice basis

R-linearly independent b1, . . . , bn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn.

Infinitely many distinct bases

B′ = B · U for U ∈ GLn(Z).

Fundamental Parallelepiped

P(B) = B · [0, 1)n

vol(L) = vol(P(B)) = | det(B)|

0 b1

b2



8 / 74

Basis Representation

Lattice basis

R-linearly independent b1, . . . , bn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn.

Infinitely many distinct bases

B′ = B · U for U ∈ GLn(Z).

Fundamental Parallelepiped

P(B) = B · [0, 1)n

vol(L) = vol(P(B)) = | det(B)|

0 b1

b2



8 / 74

Basis Representation

Lattice basis

R-linearly independent b1, . . . , bn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn.

Infinitely many distinct bases

B′ = B · U for U ∈ GLn(Z).

Fundamental Parallelepiped

P(B) = B · [0, 1)n

vol(L) = vol(P(B)) = | det(B)|

0

b1

b2



8 / 74

Basis Representation

Lattice basis

R-linearly independent b1, . . . , bn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn.

Infinitely many distinct bases

B′ = B · U for U ∈ GLn(Z).

Fundamental Parallelepiped

P(B) = B · [0, 1)n

vol(L) = vol(P(B)) = | det(B)|

0

b1

b2



9 / 74

Hard Problems

0
λ1(L)

v

∥v∥ = λ1(L)

t

v

∥t− v∥ = dist(L, t)

Shortest Vector Problem (SVP)
Find a shortest nonzero vector

v ∈ L of length λ1(L).

Closest Vector Problem (CVP)
Given a target t ∈ Rn, find

a closest vector v ∈ L to t.

Supposedly hard to solve when n is large
(even with a quantum computer)



9 / 74

Hard Problems

0
λ1(L)

v

∥v∥ = λ1(L)

t

v

∥t− v∥ = dist(L, t)

Shortest Vector Problem (SVP)
Find a shortest nonzero vector

v ∈ L of length λ1(L).

Closest Vector Problem (CVP)
Given a target t ∈ Rn, find

a closest vector v ∈ L to t.

Supposedly hard to solve when n is large
(even with a quantum computer)



9 / 74

Hard Problems

0
λ1(L)

v

∥v∥ = λ1(L)

t

v

∥t− v∥ = dist(L, t)

Shortest Vector Problem (SVP)
Find a shortest nonzero vector

v ∈ L of length λ1(L).

Closest Vector Problem (CVP)
Given a target t ∈ Rn, find

a closest vector v ∈ L to t.

Supposedly hard to solve when n is large
(even with a quantum computer)



10 / 74

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2c·n+o(n)

classical: c ≈ 0.292, or quantum: c ≈ 0.265)

⇒ not polynomial

In practice:

▶ n = 2 ⇝ easy, very efficient in practice

▶ up to n = 60 or n = 80 ⇝ a few minutes on a personal laptop

▶ up to n = 180 ⇝ few weeks on a big computer with good code

▶ from n = 400 to n = 1000 ⇝ cryptography



10 / 74

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2c·n+o(n)

classical: c ≈ 0.292, or quantum: c ≈ 0.265)

⇒ not polynomial

In practice:

▶ n = 2 ⇝ easy, very efficient in practice

▶ up to n = 60 or n = 80 ⇝ a few minutes on a personal laptop

▶ up to n = 180 ⇝ few weeks on a big computer with good code

▶ from n = 400 to n = 1000 ⇝ cryptography



10 / 74

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2c·n+o(n)

classical: c ≈ 0.292, or quantum: c ≈ 0.265)

⇒ not polynomial

In practice:

▶ n = 2 ⇝ easy, very efficient in practice

▶ up to n = 60 or n = 80 ⇝ a few minutes on a personal laptop

▶ up to n = 180 ⇝ few weeks on a big computer with good code

▶ from n = 400 to n = 1000 ⇝ cryptography



10 / 74

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2c·n+o(n)

classical: c ≈ 0.292, or quantum: c ≈ 0.265)

⇒ not polynomial

In practice:

▶ n = 2 ⇝ easy, very efficient in practice

▶ up to n = 60 or n = 80 ⇝ a few minutes on a personal laptop

▶ up to n = 180 ⇝ few weeks on a big computer with good code

▶ from n = 400 to n = 1000 ⇝ cryptography



10 / 74

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2c·n+o(n)

classical: c ≈ 0.292, or quantum: c ≈ 0.265)

⇒ not polynomial

In practice:

▶ n = 2 ⇝ easy, very efficient in practice

▶ up to n = 60 or n = 80 ⇝ a few minutes on a personal laptop

▶ up to n = 180 ⇝ few weeks on a big computer with good code

▶ from n = 400 to n = 1000 ⇝ cryptography



11 / 74

Approximate versions

0

v∥v∥ ≤ α · λ1(L)
t

v

∥t− v∥ ≤ α · dist(L, t)

α-approx-SVP
Find a short nonzero vector
v ∈ L of length ≤ α · λ1(L).

α-approx-CVP
Given a target t ∈ Rn, find
a close vector v ∈ L to t.

Supposedly hard to solve when n is large
and the approximation factor α is small (poly(n))



11 / 74

Approximate versions

0

v∥v∥ ≤ α · λ1(L)
t

v

∥t− v∥ ≤ α · dist(L, t)

α-approx-SVP
Find a short nonzero vector
v ∈ L of length ≤ α · λ1(L).

α-approx-CVP
Given a target t ∈ Rn, find
a close vector v ∈ L to t.

Supposedly hard to solve when n is large
and the approximation factor α is small (poly(n))



12 / 74

Promise versions

δ ≤ 1
2

0 v

λ1(L) ≤ δ ·Mk(L)

t

v

dist(L, t) ≤ δ · λ1(L)

δ-uSVP
Find unusually short

vector v ∈ L.

Bounded Distance Decoding (δ-BDD)
CVP with a target unusually

close to the lattice.

Supposedly hard to solve when n is large
and the promise gap 1/δ is small (poly(n))



12 / 74

Promise versions

δ ≤ 1
2

0 v

λ1(L) ≤ δ ·Mk(L)

t

v

dist(L, t) ≤ δ · λ1(L)

δ-uSVP
Find unusually short

vector v ∈ L.

Bounded Distance Decoding (δ-BDD)
CVP with a target unusually

close to the lattice.

Supposedly hard to solve when n is large
and the promise gap 1/δ is small (poly(n))



13 / 74

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):
BKZ algorithm

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

BKZ trade-offs

approxSVP/approxCVP

Cr
yp

to
gr

ap
hy

2−Ω(n) 2−Ω(n0.5)

Promise factor δ

2O(n)

2O(n0.5)

poly

uSVP/BDD



13 / 74

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):
BKZ algorithm

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

BKZ trade-offs

approxSVP/approxCVP

Cr
yp

to
gr

ap
hy

2−Ω(n) 2−Ω(n0.5)

Promise factor δ

2O(n)

2O(n0.5)

poly

uSVP/BDD



13 / 74

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):
BKZ algorithm

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

BKZ trade-offs

approxSVP/approxCVP

Cr
yp

to
gr

ap
hy
2−Ω(n) 2−Ω(n0.5)

Promise factor δ

2O(n)

2O(n0.5)

poly

uSVP/BDD



14 / 74

Recap

We have seen:

▶ Lattices are discrete subgroups of Rn

▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

▶ SVP, approxSVP, uSVP

▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

How to build cryptography from this?



14 / 74

Recap

We have seen:

▶ Lattices are discrete subgroups of Rn

▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

▶ SVP, approxSVP, uSVP

▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

How to build cryptography from this?



14 / 74

Recap

We have seen:

▶ Lattices are discrete subgroups of Rn

▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

▶ SVP, approxSVP, uSVP

▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

How to build cryptography from this?



14 / 74

Recap

We have seen:

▶ Lattices are discrete subgroups of Rn

▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

▶ SVP, approxSVP, uSVP

▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

How to build cryptography from this?



14 / 74

Recap

We have seen:

▶ Lattices are discrete subgroups of Rn

▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

▶ SVP, approxSVP, uSVP

▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

How to build cryptography from this?



14 / 74

Recap

We have seen:

▶ Lattices are discrete subgroups of Rn

▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

▶ SVP, approxSVP, uSVP

▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

How to build cryptography from this?



Lattice-based cryptography



15 / 74

Good vs bad basis

Good basis (Secret key) Bad basis (Public key)

Hard

0 b1

b2

0

b′1

b′2

Short and close to orthogonal

Keygen: Generate a random lattice along with a good basis
(NTRU, LWE, SIS, ...)



15 / 74

Good vs bad basis

Good basis (Secret key) Bad basis (Public key)

0 b1

b2

0

b′1

b′2

Short and close to orthogonal

Keygen: Generate a random lattice along with a good basis
(NTRU, LWE, SIS, ...)



15 / 74

Good vs bad basis

Good basis (Secret key) Bad basis (Public key)

Hard

0 b1

b2

0

b′1

b′2

Short and close to orthogonal

Keygen: Generate a random lattice along with a good basis
(NTRU, LWE, SIS, ...)



16 / 74

Solving CVP with a short basis

0 b1

b2

t
Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution



16 / 74

Solving CVP with a short basis

0 b1

b2

t
Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution



16 / 74

Solving CVP with a short basis

0 b1

b2

t
Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution



16 / 74

Solving CVP with a short basis

0

t
Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution

BDD: inner-radius approxCVP: outer-radius

0

t
Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution

BDD: inner-radius approxCVP: outer-radius



16 / 74

Solving CVP with a short basis

0

Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution

BDD: inner-radius approxCVP: outer-radius

0

Input: t = −1.4 · b1 + 2.2 · b2

Output: v = −1 · b1 + 2 · b2

round coordinates

e = t − v = −.4 · b1 + 0.2 · b2

e ∈ B ·
[
−1

2 , 1
2

)n

The better the basis,
the closer the solution

BDD: inner-radius approxCVP: outer-radius



17 / 74

Encryption via BDD

0 b1

b2

c
m

0

b′1

b′2

c
m

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Encrypt(m, pk) :
Input: encode message m ∈ L using pk.

Output: noisy message c = m + e.

Decrypt(c, sk):
Input: c = m + e.

Output: recover m using sk.

Assumption: Hard to solve BDD in L with bad basis.



17 / 74

Encryption via BDD

0 b1

b2

c
m

0

b′1

b′2

c
m

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Encrypt(m, pk) :
Input: encode message m ∈ L using pk.

Output: noisy message c = m + e.

Decrypt(c, sk):
Input: c = m + e.

Output: recover m using sk.

Assumption: Hard to solve BDD in L with bad basis.



17 / 74

Encryption via BDD

0 b1

b2

c
m

0

b′1

b′2

c

m

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Encrypt(m, pk) :
Input: encode message m ∈ L using pk.

Output: noisy message c = m + e.

Decrypt(c, sk):
Input: c = m + e.

Output: recover m using sk.

Assumption: Hard to solve BDD in L with bad basis.



17 / 74

Encryption via BDD

0 b1

b2

c
m

0

b′1

b′2

c

m

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Encrypt(m, pk) :
Input: encode message m ∈ L using pk.

Output: noisy message c = m + e.

Decrypt(c, sk):
Input: c = m + e.

Output: recover m using sk.

Assumption: Hard to solve BDD in L with bad basis.



18 / 74

Hash-and-sign signature scheme via approxCVP

0 b1

b2

t
s

0

b′1

b′2

t
s

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: s ∈ L close to t using sk.

Verify(s, pk):
Check that s ∈ L using pk.

Check that s is close to H(m).

Assumption: Hard to solve approxCVP in L with bad basis.



18 / 74

Hash-and-sign signature scheme via approxCVP

0 b1

b2

t

s

0

b′1

b′2

t
s

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: s ∈ L close to t using sk.

Verify(s, pk):
Check that s ∈ L using pk.

Check that s is close to H(m).

Assumption: Hard to solve approxCVP in L with bad basis.



18 / 74

Hash-and-sign signature scheme via approxCVP

0 b1

b2

t
s

0

b′1

b′2

t
s

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: s ∈ L close to t using sk.

Verify(s, pk):
Check that s ∈ L using pk.

Check that s is close to H(m).

Assumption: Hard to solve approxCVP in L with bad basis.



18 / 74

Hash-and-sign signature scheme via approxCVP

0 b1

b2

t
s

0

b′1

b′2
t

s

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: s ∈ L close to t using sk.

Verify(s, pk):
Check that s ∈ L using pk.

Check that s is close to H(m).

Assumption: Hard to solve approxCVP in L with bad basis.



18 / 74

Hash-and-sign signature scheme via approxCVP

0 b1

b2

t
s

0

b′1

b′2

t
s

KeyGen:

sk = good basis of L.

pk = bad basis of L.

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: s ∈ L close to t using sk.

Verify(s, pk):
Check that s ∈ L using pk.

Check that s is close to H(m).

Assumption: Hard to solve approxCVP in L with bad basis.



19 / 74

Learning attack on the signature scheme

t
s sk

Parallelepiped attack:

▶ ask for a signature s on m
▶ plot H(m)− s

▶ repeat

From the shape of the

parallelepiped, one can

recover the short basis

[NR06] Nguyen and Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology



19 / 74

Learning attack on the signature scheme

t
s

sk

Parallelepiped attack:

▶ ask for a signature s on m
▶ plot H(m)− s
▶ repeat

From the shape of the

parallelepiped, one can

recover the short basis

[NR06] Nguyen and Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology



19 / 74

Learning attack on the signature scheme

t
s

sk

Parallelepiped attack:

▶ ask for a signature s on m
▶ plot H(m)− s
▶ repeat

From the shape of the

parallelepiped, one can

recover the short basis

[NR06] Nguyen and Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology



20 / 74

Preventing the attack

t

Idea: solve approxCVP randomly

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: (discrete Gaussian) sample

s ∈ L close to t using sk.

Signature does not depend

on secret basis ⇒ no leakage!

Falcon = the above + NTRU lattices.



20 / 74

Preventing the attack

t

Idea: solve approxCVP randomly

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: (discrete Gaussian) sample

s ∈ L close to t using sk.

Signature does not depend

on secret basis ⇒ no leakage!

Falcon = the above + NTRU lattices.



20 / 74

Preventing the attack

t
s

Idea: solve approxCVP randomly

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: (discrete Gaussian) sample

s ∈ L close to t using sk.

Signature does not depend

on secret basis ⇒ no leakage!

Falcon = the above + NTRU lattices.



20 / 74

Preventing the attack

t
s

Idea: solve approxCVP randomly

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: (discrete Gaussian) sample

s ∈ L close to t using sk.

Signature does not depend

on secret basis ⇒ no leakage!

Falcon = the above + NTRU lattices.



20 / 74

Preventing the attack

t
s

Idea: solve approxCVP randomly

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: (discrete Gaussian) sample

s ∈ L close to t using sk.

Signature does not depend

on secret basis ⇒ no leakage!

Falcon = the above + NTRU lattices.



20 / 74

Preventing the attack

t
s

Idea: solve approxCVP randomly

Sign(m, sk) :
Hash m to a target t = H(m) ∈ Rn.

Output: (discrete Gaussian) sample

s ∈ L close to t using sk.

Signature does not depend

on secret basis ⇒ no leakage!

Falcon = the above + NTRU lattices.



21 / 74

Recap and advanced constructions

We have seen:

▶ BDD is hard (in a family of random lattices) ⇒ encryption
scheme.

▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

▶ (fully) homomorphic encryption

▶ identity based encryption

▶ functional encryption for linear functions

▶ ...

How hard?



21 / 74

Recap and advanced constructions

We have seen:

▶ BDD is hard (in a family of random lattices) ⇒ encryption
scheme.

▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

▶ (fully) homomorphic encryption

▶ identity based encryption

▶ functional encryption for linear functions

▶ ...

How hard?



21 / 74

Recap and advanced constructions

We have seen:

▶ BDD is hard (in a family of random lattices) ⇒ encryption
scheme.

▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

▶ (fully) homomorphic encryption

▶ identity based encryption

▶ functional encryption for linear functions

▶ ...

How hard?



21 / 74

Recap and advanced constructions

We have seen:

▶ BDD is hard (in a family of random lattices) ⇒ encryption
scheme.

▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

▶ (fully) homomorphic encryption

▶ identity based encryption

▶ functional encryption for linear functions

▶ ...

How hard?



21 / 74

Recap and advanced constructions

We have seen:

▶ BDD is hard (in a family of random lattices) ⇒ encryption
scheme.

▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

▶ (fully) homomorphic encryption

▶ identity based encryption

▶ functional encryption for linear functions

▶ ...

How hard?



Cryptanalysis - Algorithms to solve (approx)SVP



22 / 74

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

Sieving

LLL

BKZ trade-offs



22 / 74

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

Sieving

LLL

BKZ trade-offs



22 / 74

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

Sieving

LLL

BKZ trade-offs



22 / 74

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

2O(n)

2O(n0.5)

poly

Sieving

LLL

BKZ trade-offs



Heuristically solving SVP with lattice sieving



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



23 / 74

Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

▶ reason about the practical behavior of algorithms

▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis

Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

▶ matches with practical experiments



24 / 74

Gaussian Heuristic

S

For a ‘nice’ volume S ⊂ Rn:

|S ∩ L| ≈ vol(S)
vol(L) = vol(S) · density(L)

lattice points are uniformly

distributed with a certain density.

In theory: true in expectation
over all translations of S or

for a random lattice L.

In practice: true for random lattices.
(for a very weak heuristic notion of randomness)



24 / 74

Gaussian Heuristic

S

For a ‘nice’ volume S ⊂ Rn:

|S ∩ L| ≈ vol(S)
vol(L) = vol(S) · density(L)

lattice points are uniformly

distributed with a certain density.

In theory: true in expectation
over all translations of S or

for a random lattice L.

In practice: true for random lattices.
(for a very weak heuristic notion of randomness)



24 / 74

Gaussian Heuristic

S

For a ‘nice’ volume S ⊂ Rn:

|S ∩ L| ≈ vol(S)
vol(L) = vol(S) · density(L)

lattice points are uniformly

distributed with a certain density.

In theory: true in expectation
over all translations of S or

for a random lattice L.

In practice: true for random lattices.
(for a very weak heuristic notion of randomness)



24 / 74

Gaussian Heuristic

S

For a ‘nice’ volume S ⊂ Rn:

|S ∩ L| ≈ vol(S)
vol(L) = vol(S) · density(L)

lattice points are uniformly

distributed with a certain density.

In theory: true in expectation
over all translations of S or

for a random lattice L.

In practice: true for random lattices.
(for a very weak heuristic notion of randomness)



25 / 74

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

vol([−1, 1]n) = 2n, vol(Bn) =
πn/2

Γ(n
2 + 1)

=

(2πe
n

)n/2+o(n)
→ 0

n = 2
78.5%

n = 4
31%

n = 10
0.25%

n-dimensional balls with a fixed radius ‘disappear’ for large n.



25 / 74

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

vol([−1, 1]n) = 2n, vol(Bn) =
πn/2

Γ(n
2 + 1)

=

(2πe
n

)n/2+o(n)
→ 0

n = 2
78.5%

n = 4
31%

n = 10
0.25%

n-dimensional balls with a fixed radius ‘disappear’ for large n.



25 / 74

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

vol([−1, 1]n) = 2n, vol(Bn) =
πn/2

Γ(n
2 + 1)

=

(2πe
n

)n/2+o(n)
→ 0

n = 2
78.5%

n = 4
31%

n = 10
0.25%

n-dimensional balls with a fixed radius ‘disappear’ for large n.



25 / 74

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

vol([−1, 1]n) = 2n, vol(Bn) =
πn/2

Γ(n
2 + 1)

=

(2πe
n

)n/2+o(n)
→ 0

n = 2
78.5%

n = 4
31%

n = 10
0.25%

n-dimensional balls with a fixed radius ‘disappear’ for large n.



26 / 74

Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor Rn.

Example: suppose we have a ball γ · B500 with the same volume as a
500-dimensional lattice L ⊂ R500.

Gaussian Heuristic⇒∣∣∣(γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1∣∣∣(1.05 · γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1.05500 = 3.9 · 1010∣∣∣(0.95 · γ · B500 \ {0}
)
∩ L

∣∣∣ = 7.3 · 10−12 ≈ 0

λ1(L) ≈ γ. λ1 ≈ gh(L) := vol(L)1/n

vol(Bn)1/n ∼
√

n/2πe · vol(L)1/n.



26 / 74

Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor Rn.

Example: suppose we have a ball γ · B500 with the same volume as a
500-dimensional lattice L ⊂ R500.

Gaussian Heuristic⇒∣∣∣(γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1∣∣∣(1.05 · γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1.05500 = 3.9 · 1010∣∣∣(0.95 · γ · B500 \ {0}
)
∩ L

∣∣∣ = 7.3 · 10−12 ≈ 0

λ1(L) ≈ γ. λ1 ≈ gh(L) := vol(L)1/n

vol(Bn)1/n ∼
√

n/2πe · vol(L)1/n.



26 / 74

Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor Rn.

Example: suppose we have a ball γ · B500 with the same volume as a
500-dimensional lattice L ⊂ R500.

Gaussian Heuristic⇒∣∣∣(γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1∣∣∣(1.05 · γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1.05500 = 3.9 · 1010∣∣∣(0.95 · γ · B500 \ {0}
)
∩ L

∣∣∣ = 7.3 · 10−12 ≈ 0

λ1(L) ≈ γ. λ1 ≈ gh(L) := vol(L)1/n

vol(Bn)1/n ∼
√

n/2πe · vol(L)1/n.



26 / 74

Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor Rn.

Example: suppose we have a ball γ · B500 with the same volume as a
500-dimensional lattice L ⊂ R500.

Gaussian Heuristic⇒∣∣∣(γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1∣∣∣(1.05 · γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1.05500 = 3.9 · 1010∣∣∣(0.95 · γ · B500 \ {0}
)
∩ L

∣∣∣ = 7.3 · 10−12 ≈ 0

λ1(L) ≈ γ.

λ1 ≈ gh(L) := vol(L)1/n

vol(Bn)1/n ∼
√

n/2πe · vol(L)1/n.



26 / 74

Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor Rn.

Example: suppose we have a ball γ · B500 with the same volume as a
500-dimensional lattice L ⊂ R500.

Gaussian Heuristic⇒∣∣∣(γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1∣∣∣(1.05 · γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1.05500 = 3.9 · 1010∣∣∣(0.95 · γ · B500 \ {0}
)
∩ L

∣∣∣ = 7.3 · 10−12 ≈ 0

λ1(L) ≈ γ. λ1 ≈ gh(L) := vol(L)1/n

vol(Bn)1/n ∼
√

n/2πe · vol(L)1/n.



26 / 74

Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor Rn.

Example: suppose we have a ball γ · B500 with the same volume as a
500-dimensional lattice L ⊂ R500.

Gaussian Heuristic⇒∣∣∣(γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1∣∣∣(1.05 · γ · B500 \ {0}
)
∩ L

∣∣∣ ≈ 1.05500 = 3.9 · 1010∣∣∣(0.95 · γ · B500 \ {0}
)
∩ L

∣∣∣ = 7.3 · 10−12 ≈ 0

λ1(L) ≈ γ. λ1 ≈ gh(L) := vol(L)1/n

vol(Bn)1/n ∼
√

n/2πe · vol(L)1/n.



27 / 74

SVP via Lattice Sieving

1. Sample a list L ⊂ L of (long) lattice vectors.

2. Repeat:

v1

v2

Find close vectors v1, v2 ∈ L. Replace v2 ← v1 − v2.



27 / 74

SVP via Lattice Sieving

1. Sample a list L ⊂ L of (long) lattice vectors.

2. Repeat:

v1

v2

Find close vectors v1, v2 ∈ L. Replace v2 ← v1 − v2.



28 / 74

Heuristic complexity analysis

1
2

Start with a list L of
N vectors of length ≤ γ.

Heuristic assumption

vectors in list L have uniform directions.

Probability ∥v1 − v2∥ ≤ 0.999 · γ equals

relative volume spherical cap ≈ (3/4 + ϵ)n/2+o(n)

N2 pairs, new list size N, so need N2 · (3/4)n/2 ≥ N.

Space: N · poly(n) = (4/3)n/2+o(n) = 20.2075+o(n)

Time: N2 · poly(n) = (4/3)n+o(n) = 20.415n+o(n).

Can be improved to20.292n+o(n)!.



28 / 74

Heuristic complexity analysis

1
2

Start with a list L of
N vectors of length ≤ γ.

Heuristic assumption

vectors in list L have uniform directions.

Probability ∥v1 − v2∥ ≤ 0.999 · γ equals

relative volume spherical cap ≈ (3/4 + ϵ)n/2+o(n)

N2 pairs, new list size N, so need N2 · (3/4)n/2 ≥ N.

Space: N · poly(n) = (4/3)n/2+o(n) = 20.2075+o(n)

Time: N2 · poly(n) = (4/3)n+o(n) = 20.415n+o(n).

Can be improved to20.292n+o(n)!.



28 / 74

Heuristic complexity analysis

1
2

Start with a list L of
N vectors of length ≤ γ.

Heuristic assumption

vectors in list L have uniform directions.

Probability ∥v1 − v2∥ ≤ 0.999 · γ equals

relative volume spherical cap ≈ (3/4 + ϵ)n/2+o(n)

N2 pairs, new list size N, so need N2 · (3/4)n/2 ≥ N.

Space: N · poly(n) = (4/3)n/2+o(n) = 20.2075+o(n)

Time: N2 · poly(n) = (4/3)n+o(n) = 20.415n+o(n).

Can be improved to20.292n+o(n)!.



28 / 74

Heuristic complexity analysis

1
2

Start with a list L of
N vectors of length ≤ γ.

Heuristic assumption

vectors in list L have uniform directions.

Probability ∥v1 − v2∥ ≤ 0.999 · γ equals

relative volume spherical cap ≈ (3/4 + ϵ)n/2+o(n)

N2 pairs, new list size N, so need N2 · (3/4)n/2 ≥ N.

Space: N · poly(n) = (4/3)n/2+o(n) = 20.2075+o(n)

Time: N2 · poly(n) = (4/3)n+o(n) = 20.415n+o(n).

Can be improved to20.292n+o(n)!.



28 / 74

Heuristic complexity analysis

1
2

Start with a list L of
N vectors of length ≤ γ.

Heuristic assumption

vectors in list L have uniform directions.

Probability ∥v1 − v2∥ ≤ 0.999 · γ equals

relative volume spherical cap ≈ (3/4 + ϵ)n/2+o(n)

N2 pairs, new list size N, so need N2 · (3/4)n/2 ≥ N.

Space: N · poly(n) = (4/3)n/2+o(n) = 20.2075+o(n)

Time: N2 · poly(n) = (4/3)n+o(n) = 20.415n+o(n).

Can be improved to20.292n+o(n)!.



28 / 74

Heuristic complexity analysis

1
2

Start with a list L of
N vectors of length ≤ γ.

Heuristic assumption

vectors in list L have uniform directions.

Probability ∥v1 − v2∥ ≤ 0.999 · γ equals

relative volume spherical cap ≈ (3/4 + ϵ)n/2+o(n)

N2 pairs, new list size N, so need N2 · (3/4)n/2 ≥ N.

Space: N · poly(n) = (4/3)n/2+o(n) = 20.2075+o(n)

Time: N2 · poly(n) = (4/3)n+o(n) = 20.415n+o(n).

Can be improved to20.292n+o(n)!.



Solving approxSVP/CVP via basis reduction



29 / 74

Gram-Schmidt Orthogonalisation

0 b∗1 = b1

b2b∗2

GSO: b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

Fundamental Area: FB∗ :=
k∏

i=1

[
−1

2b∗i , 1
2b∗i

)

Nearest plane algorithm

Input: target t = e
For j = n, . . . , 1:

e ← e −
⌊ ⟨e,b∗

i ⟩
⟨b∗

i ,b∗
i ⟩

⌉
bi .

Output: e ∈ FB∗



29 / 74

Gram-Schmidt Orthogonalisation

0 b∗1 = b1

b2

b∗2

GSO: b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

Fundamental Area: FB∗ :=
k∏

i=1

[
−1

2b∗i , 1
2b∗i

)

Nearest plane algorithm

Input: target t = e
For j = n, . . . , 1:

e ← e −
⌊ ⟨e,b∗

i ⟩
⟨b∗

i ,b∗
i ⟩

⌉
bi .

Output: e ∈ FB∗



29 / 74

Gram-Schmidt Orthogonalisation

0 b∗1 = b1

b2

b∗2

GSO: b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

Fundamental Area: FB∗ :=
k∏

i=1

[
−1

2b∗i , 1
2b∗i

)

Nearest plane algorithm

Input: target t = e
For j = n, . . . , 1:

e ← e −
⌊ ⟨e,b∗

i ⟩
⟨b∗

i ,b∗
i ⟩

⌉
bi .

Output: e ∈ FB∗



30 / 74

Good vs Bad basis

vol(L) = vol(FB∗) =
k∏

i=1

∥∥b∗i ∥∥

b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

0 b∗1 = b1

b2b∗2

0

b∗1 = b1

b2

b∗2

BDD: ∥e∥ < 1
2 mini

∥∥b∗i ∥∥,
approxCVP: ∥e∥2 ≤ 1

4
∑

i
∥∥b∗i ∥∥2.

Good Basis:∥∥b∗1∥∥ ≈ . . . ≈
∥∥b∗k∥∥



30 / 74

Good vs Bad basis

vol(L) = vol(FB∗) =
k∏

i=1

∥∥b∗i ∥∥b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

0 b∗1 = b1

b2

b∗2

0

b∗1 = b1

b2

b∗2

BDD: ∥e∥ < 1
2 mini

∥∥b∗i ∥∥,
approxCVP: ∥e∥2 ≤ 1

4
∑

i
∥∥b∗i ∥∥2.

Good Basis:∥∥b∗1∥∥ ≈ . . . ≈
∥∥b∗k∥∥



30 / 74

Good vs Bad basis

vol(L) = vol(FB∗) =
k∏

i=1

∥∥b∗i ∥∥b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

0 b∗1 = b1

b2

b∗2

0

b∗1 = b1

b2

b∗2

BDD: ∥e∥ < 1
2 mini

∥∥b∗i ∥∥,
approxCVP: ∥e∥2 ≤ 1

4
∑

i
∥∥b∗i ∥∥2.

Good Basis:∥∥b∗1∥∥ ≈ . . . ≈
∥∥b∗k∥∥



30 / 74

Good vs Bad basis

vol(L) = vol(FB∗) =
k∏

i=1

∥∥b∗i ∥∥b∗i := π(b1,...,bi−1)⊥︸ ︷︷ ︸
πi

(bi)

0 b∗1 = b1

b2

b∗2

0

b∗1 = b1

b2

b∗2

BDD: ∥e∥ < 1
2 mini

∥∥b∗i ∥∥,
approxCVP: ∥e∥2 ≤ 1

4
∑

i
∥∥b∗i ∥∥2.

Good Basis:∥∥b∗1∥∥ ≈ . . . ≈
∥∥b∗k∥∥



31 / 74

Basis Profile

1 n0

Bad
Profile

Good Profile

index i

lo
g
∥ ∥ b∗ i

∥ ∥

Area = log vol(L)

Basis profile

Measures the length and
orthogonality of a basis

Basis reduction

Input: Bad basis

Output: good basis

Flatten the profile!



31 / 74

Basis Profile

1 n0

Bad
Profile

Good Profile

index i

lo
g
∥ ∥ b∗ i

∥ ∥

Area = log vol(L)

Basis profile

Measures the length and
orthogonality of a basis

Basis reduction

Input: Bad basis

Output: good basis

Flatten the profile!



31 / 74

Basis Profile

1 n0

Bad
Profile

Good Profile

index i

lo
g
∥ ∥ b∗ i

∥ ∥

Area = log vol(L)

Basis profile

Measures the length and
orthogonality of a basis

Basis reduction

Input: Bad basis

Output: good basis

Flatten the profile!



31 / 74

Basis Profile

1 n0

Bad
Profile

Good Profile

index i

lo
g
∥ ∥ b∗ i

∥ ∥

Area = log vol(L)

Basis profile

Measures the length and
orthogonality of a basis

Basis reduction

Input: Bad basis

Output: good basis

Flatten the profile!



32 / 74

Example: NTRU public vs secret basis

public and secret bases generated from the NTRU problem

1 n0

√q

q Public basis

Secret basis

index i

lo
g
∥ ∥ b∗ i

∥ ∥



33 / 74

Lagrange Reduction (n=2)

b1

b2
Wristwatch Lemma

For any lattice L of rank 2
there exists a basis (b1, b2) s.t.

∥b1∥ ≤ ∥b2∥

|⟨b1, b2⟩| ≤ 1
2 ∥b1∥

⇓
∥∥b∗1∥∥ ≤ √

4
3 ·
∥∥b∗2∥∥



34 / 74

LLL Reduction

Definition
A basis B of L is LLL-reduced if

(πi(bi), πi(bi+1)) is Lagrange Reduced
for all i < n.



34 / 74

LLL Reduction

Definition
A basis B of L is LLL-reduced if

(πi(bi), πi(bi+1)) is Lagrange Reduced
for all i < n.

⇓
∀i < n,

∥∥b∗i ∥∥ ≤ √
4/3 ·

∥∥∥b∗i+1

∥∥∥

Decreases slowly

index i

log
∥∥b∗i ∥∥



34 / 74

LLL Reduction

Definition
A basis B of L is LLL-reduced if

(πi(bi), πi(bi+1)) is Lagrange Reduced
for all i < n.

⇓
∀i < n,

∥∥b∗i ∥∥ ≤ √
4/3 ·

∥∥∥b∗i+1

∥∥∥
⇓

∥b1∥ ≤
√

4/3
n−1

2 · vol(L)1/n

Decreases slowly

index i

log
∥∥b∗i ∥∥



34 / 74

LLL Reduction

Definition
A basis B of L is LLL-reduced if

(πi(bi), πi(bi+1)) is Lagrange Reduced
for all i < n.

⇓
∀i < n,

∥∥b∗i ∥∥ ≤ √
4/3 ·

∥∥∥b∗i+1

∥∥∥
⇓

∥b1∥ ≤
√

4/3
n−1

2 · vol(L)1/n

Decreases slowly

index i

log
∥∥b∗i ∥∥

Algorithm
While ∃i s.t. (πi(bi), πi(bi+1))

is not Lagrange Reduced,
Langrange Reduce it.



34 / 74

LLL Reduction

Definition
A basis B of L is LLL-reduced if

(πi(bi), πi(bi+1)) is Lagrange Reduced
for all i < n.

⇓
∀i < n,

∥∥b∗i ∥∥ ≤ √
4/3 ·

∥∥∥b∗i+1

∥∥∥
⇓

∥b1∥ ≤
√

4/3
n−1

2 · vol(L)1/n

Decreases slowly

index i

log
∥∥b∗i ∥∥

Algorithm
While ∃i s.t. (πi(bi), πi(bi+1))

is not Lagrange Reduced,
Langrange Reduce it.

Termination in poly-time:

Requires a slight relaxation.
(ϵ-Lagrange Reduced)

Proof argument:
P =

∑
i≤n

(n + 1− i) · log
∥∥b∗i ∥∥

Decreases by ϵ at each step
and is lower-bounded.



35 / 74

BKZ algorithm

▶ Define the projected sublattice basis Bl :r := (πl(bl), . . . , πl(br−1)).

▶ For κ = 1, . . . , n solve SVP in L(Bκ:min{n+1,κ+β}) and replace bκ.

▶ Reduction better for larger blocksize β, but cost 20.292β+o(n).

▶ Behaviour well understood for ‘random’ lattices. [GSA]



35 / 74

BKZ algorithm

▶ Define the projected sublattice basis Bl :r := (πl(bl), . . . , πl(br−1)).
▶ For κ = 1, . . . , n solve SVP in L(Bκ:min{n+1,κ+β}) and replace bκ.

0 20 40 60 80 100
index i

lo
g

||b
* i
||

κ κ + β

β

▶ Reduction better for larger blocksize β, but cost 20.292β+o(n).
▶ Behaviour well understood for ‘random’ lattices. [GSA]



35 / 74

BKZ algorithm

▶ Define the projected sublattice basis Bl :r := (πl(bl), . . . , πl(br−1)).
▶ For κ = 1, . . . , n solve SVP in L(Bκ:min{n+1,κ+β}) and replace bκ.

0 20 40 60 80 100
index i

lo
g

||b
* i
||

κ κ + β

β

0 20 40 60 80 100
index i

lo
g

||b
* i
||

κ κ + β

β

▶ Reduction better for larger blocksize β, but cost 20.292β+o(n).
▶ Behaviour well understood for ‘random’ lattices. [GSA]



35 / 74

BKZ algorithm

▶ Define the projected sublattice basis Bl :r := (πl(bl), . . . , πl(br−1)).
▶ For κ = 1, . . . , n solve SVP in L(Bκ:min{n+1,κ+β}) and replace bκ.
▶ Reduction better for larger blocksize β, but cost 20.292β+o(n).

▶ Behaviour well understood for ‘random’ lattices. [GSA]

0 20 40 60 80 100
index i

lo
g

||b
* i
||

LLL
10-BKZ
20-BKZ
40-BKZ



35 / 74

BKZ algorithm

▶ Define the projected sublattice basis Bl :r := (πl(bl), . . . , πl(br−1)).
▶ For κ = 1, . . . , n solve SVP in L(Bκ:min{n+1,κ+β}) and replace bκ.
▶ Reduction better for larger blocksize β, but cost 20.292β+o(n).
▶ Behaviour well understood for ‘random’ lattices. [GSA]

0 20 40 60 80 100
index i

lo
g

||b
* i
||

LLL
LLL GSA$
40-BKZ
40-BKZ GSA



36 / 74

Recap

We have seen:

▶ SVP can be solved in time 20.292n+o(n) via lattice sieving

▶ Lattice reduction: flattening the basis profile

LLL algorithm:

SVP for rank 2
(Lagrange reduction) ∥b1∥ ≤

√
4/3

n−1
2 · vol(L)1/n

BKZ algorithm:

SVP for rank β
(sieving) ∥b1∥ ≤ O(β)

n−1
2(β−1) · vol(L)1/n

▶ Same algorithms also solve promise variants uSVP and BDD



36 / 74

Recap

We have seen:

▶ SVP can be solved in time 20.292n+o(n) via lattice sieving

▶ Lattice reduction: flattening the basis profile

LLL algorithm:

SVP for rank 2
(Lagrange reduction) ∥b1∥ ≤

√
4/3

n−1
2 · vol(L)1/n

BKZ algorithm:

SVP for rank β
(sieving) ∥b1∥ ≤ O(β)

n−1
2(β−1) · vol(L)1/n

▶ Same algorithms also solve promise variants uSVP and BDD



36 / 74

Recap

We have seen:

▶ SVP can be solved in time 20.292n+o(n) via lattice sieving

▶ Lattice reduction: flattening the basis profile

LLL algorithm:

SVP for rank 2
(Lagrange reduction) ∥b1∥ ≤

√
4/3

n−1
2 · vol(L)1/n

BKZ algorithm:

SVP for rank β
(sieving) ∥b1∥ ≤ O(β)

n−1
2(β−1) · vol(L)1/n

▶ Same algorithms also solve promise variants uSVP and BDD



36 / 74

Recap

We have seen:

▶ SVP can be solved in time 20.292n+o(n) via lattice sieving

▶ Lattice reduction: flattening the basis profile

LLL algorithm:

SVP for rank 2
(Lagrange reduction) ∥b1∥ ≤

√
4/3

n−1
2 · vol(L)1/n

BKZ algorithm:

SVP for rank β
(sieving) ∥b1∥ ≤ O(β)

n−1
2(β−1) · vol(L)1/n

▶ Same algorithms also solve promise variants uSVP and BDD



36 / 74

Recap

We have seen:

▶ SVP can be solved in time 20.292n+o(n) via lattice sieving

▶ Lattice reduction: flattening the basis profile

LLL algorithm:

SVP for rank 2
(Lagrange reduction) ∥b1∥ ≤

√
4/3

n−1
2 · vol(L)1/n

BKZ algorithm:

SVP for rank β
(sieving) ∥b1∥ ≤ O(β)

n−1
2(β−1) · vol(L)1/n

▶ Same algorithms also solve promise variants uSVP and BDD



37 / 74

Conclusion

We have seen:

▶ Basics of lattice theory and hard problems

▶ How these hard problems can be used for cryptography

▶ The best (known) algorithms to solve these problems

What’s next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

▶ Why do we trust these lattices? (hardness reductions)

▶ More efficiency: algebraic lattices (ideal and module lattices)



37 / 74

Conclusion

We have seen:

▶ Basics of lattice theory and hard problems

▶ How these hard problems can be used for cryptography

▶ The best (known) algorithms to solve these problems

What’s next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

▶ Why do we trust these lattices? (hardness reductions)

▶ More efficiency: algebraic lattices (ideal and module lattices)



37 / 74

Conclusion

We have seen:

▶ Basics of lattice theory and hard problems

▶ How these hard problems can be used for cryptography

▶ The best (known) algorithms to solve these problems

What’s next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

▶ Why do we trust these lattices? (hardness reductions)

▶ More efficiency: algebraic lattices (ideal and module lattices)



37 / 74

Conclusion

We have seen:

▶ Basics of lattice theory and hard problems

▶ How these hard problems can be used for cryptography

▶ The best (known) algorithms to solve these problems

What’s next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

▶ Why do we trust these lattices? (hardness reductions)

▶ More efficiency: algebraic lattices (ideal and module lattices)



37 / 74

Conclusion

We have seen:

▶ Basics of lattice theory and hard problems

▶ How these hard problems can be used for cryptography

▶ The best (known) algorithms to solve these problems

What’s next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

▶ Why do we trust these lattices? (hardness reductions)

▶ More efficiency: algebraic lattices (ideal and module lattices)



37 / 74

Conclusion

We have seen:

▶ Basics of lattice theory and hard problems

▶ How these hard problems can be used for cryptography

▶ The best (known) algorithms to solve these problems

What’s next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

▶ Why do we trust these lattices? (hardness reductions)

▶ More efficiency: algebraic lattices (ideal and module lattices)



Part II



38 / 74

Plan

Part I

Lattice theory

▶ Lattices
▶ Hard problems

Cryptography

▶ Trapdoor bases
▶ Encryption, Signature

Cryptanalysis

▶ Lattice Sieving
▶ Basis Reduction

Part II

Lattices used in cryptography

▶ SIS, LWE, decLWE
▶ Security proofs

Hardness Reductions

▶ search to decision
▶ WC to AC reductions

Algebraic Lattices

▶ Ideal and module lattices
▶ NTRU, RLWE, mod-LWE



39 / 74

Limitations of SVP (and CVP)

SVP and CVP are hard in the worst case

▶ no efficient algorithm that works for any lattice

▶ but for some lattice it might be easier

For crypto, we need problems that are hard on average

(i.e., for a random instance, the problem is hard with overwhelming probability)



39 / 74

Limitations of SVP (and CVP)

SVP and CVP are hard in the worst case

▶ no efficient algorithm that works for any lattice

▶ but for some lattice it might be easier

For crypto, we need problems that are hard on average

(i.e., for a random instance, the problem is hard with overwhelming probability)



39 / 74

Limitations of SVP (and CVP)

SVP and CVP are hard in the worst case

▶ no efficient algorithm that works for any lattice

▶ but for some lattice it might be easier

For crypto, we need problems that are hard on average

(i.e., for a random instance, the problem is hard with overwhelming probability)



39 / 74

Limitations of SVP (and CVP)

SVP and CVP are hard in the worst case

▶ no efficient algorithm that works for any lattice

▶ but for some lattice it might be easier

For crypto, we need problems that are hard on average

(i.e., for a random instance, the problem is hard with overwhelming probability)



random q-ary lattices



40 / 74

q-ary lattices

Notations: q, n, m integers, 1 ≤ n ≪ m, Zq := Z/qZ
▶ A lattice L ⊂ Rm of dimension m is called q-ary if

qZm ⊂ L ⊂ Zm.

▶ Let A ∈ Zm×n
q , then we define the row-generated q-ary lattice

Λq(A) := {y ∈ Zm : y ≡ Ax mod q for some x ∈ Zn
q} = AZn + qZm

▶ and the parity-check q-ary lattice

Λ⊥q (A) := {x ∈ Zm : x⊤A ≡ 0 mod q} = ker(A⊤ : Zm → Zn
q)

▶ Exercise: if q prime and A has full column-rank, then

vol(Λq(A)) = qm−n, vol(Λ⊥q (A)) = qn



41 / 74

Example

0 (q, 0)

(0, q) (q, q)

(1, 2)

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



41 / 74

Example

0 (q, 0)

(0, q) (q, q)

(1, 2)

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



41 / 74

Example

0 (q, 0)

(0, q) (q, q)

(1, 2)

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



41 / 74

Example

0 (q, 0)

(0, q) (q, q)

(1, 2)

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



41 / 74

Example

0 (q, 0)

(0, q) (q, q)

(1, 2)

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



41 / 74

Example

0

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



41 / 74

Example

2q3q4q5q q 0

0

Suppose q = 5, n = 1, m = 2,

A =

(
1
2

)

Λq(A) = AZn + qZm =

(
1
2

)
· Z + 5Z2

Parity-check representation:

Λq

((
1
2

))
= Λ⊥q

((
−2
1

))
= {(x, y) ∈ Z2 : −2x + y ≡ 0 mod q}



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!
▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X

Solving X with

Solving approx-SVP
in any lattice ≥

non-negligible prob.

≳ in any lattice
of rank m

in a random q-ary lattice

of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!
▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X

Solving X with

Solving approx-SVP
in any lattice ≥

non-negligible prob.

≳ in any lattice
of rank m

in a random q-ary lattice

of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!

▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X

Solving X with

Solving approx-SVP
in any lattice ≥

non-negligible prob.

≳ in any lattice
of rank m

in a random q-ary lattice

of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!
▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X Solving X with

Solving approx-SVP

in any lattice ≥ non-negligible prob.

≳ in any lattice

of rank m in a random q-ary lattice

of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!
▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X Solving X with Solving approx-SVP
in any lattice ≥ non-negligible prob. ≳ in any lattice

of rank m in a random q-ary lattice of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!
▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X Solving X with Solving approx-SVP
in any lattice ≥ non-negligible prob. ≳ in any lattice

of rank m in a random q-ary lattice of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



42 / 74

Family of random q-ary lattices

▶ Random q-ary lattice: sample A ∈ U
(
Zm×n

q

)
, and consider Λq(A)

▶ equivalently: sample A ∈ U
(
Zm×(m−n)

q

)
, and consider Λ⊥q (A)

▶ Defines average-case problems!
▶ For X ∈ {approxSVP, approxCVP, uSVP, BDD} and m = poly(n) we have

Solving X Solving X with Solving approx-SVP
in any lattice ≥ non-negligible prob. ≳ in any lattice

of rank m in a random q-ary lattice of rank min(n, m − n)

Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.



43 / 74

The SIS problem

Notations: q, B integers, 1 ≤ B ≪ q, Zq := Z/qZ

SIS ( Short Integer Solution) [Ajt96]
Parameters: B and q

Problem: Given A ← U(Zm×n
q ) (with n log q < m)

Find x ∈ Zm s.t. xT A = 0 mod q with ∥x∥ ≤ B and x ̸= 0.

Solving approx-SVP

Solving SIS Solving approx-SVP

in any lattice ≥

with non-negligible ≳ in any lattice

lattice of rank m

probability of rank n

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.



43 / 74

The SIS problem

Notations: q, B integers, 1 ≤ B ≪ q, Zq := Z/qZ

SIS ( Short Integer Solution) [Ajt96]
Parameters: B and q

Problem: Given A ← U(Zm×n
q ) (with n log q < m)

Find x ∈ Zm s.t. xT A = 0 mod q with ∥x∥ ≤ B and x ̸= 0.

Solving approx-SVP

Solving SIS Solving approx-SVP

in any lattice ≥

with non-negligible ≳ in any lattice

lattice of rank m

probability of rank n

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.



43 / 74

The SIS problem

Notations: q, B integers, 1 ≤ B ≪ q, Zq := Z/qZ

SIS ( Short Integer Solution) [Ajt96]
Parameters: B and q

Problem: Given A ← U(Zm×n
q ) (with n log q < m)

Find x ∈ Zm s.t. xT A = 0 mod q with ∥x∥ ≤ B and x ̸= 0.

Solving approx-SVP Solving SIS Solving approx-SVP
in any lattice ≥ with non-negligible ≳ in any lattice

lattice of rank m probability of rank n

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.



43 / 74

The SIS problem

Notations: q, B integers, 1 ≤ B ≪ q, Zq := Z/qZ

ISIS (Inhomogeneous Short Integer Solution) [Ajt96]
Parameters: B and q

Problem: Given A ← U(Zm×n
q ) , y ← U(Zn

q)

Find x ∈ Zm s.t. xT A = yT modq with ∥x∥ ≤ B .

Solving approx-CVP Solving ISIS Solving approx-SVP
in any lattice ≥ with non-negligible ≳ in any lattice

lattice of rank m probability of rank n

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.



44 / 74

(I)SIS is as hard as worst-case lattice problems

Theorem [Ajt96]
For any m = poly(n) and B > 0 and sufficiently large q ≥ B · poly(n),
it holds that solving SIS is at least as hard as solving γ-SIVP on
arbitrary n-dimensional lattice, for some approximation factor
γ = B · poly(n).

(SIVP = shortest independent vectors problems.

Objective: find n short linearly independent vectors in the lattice)

▶ the poly quantities have been improved in more recent works

▶ for typical parameters: SIS ∼= ISIS

▶ see [Pei16] for a survey

[Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.



44 / 74

(I)SIS is as hard as worst-case lattice problems

Theorem [Ajt96]
For any m = poly(n) and B > 0 and sufficiently large q ≥ B · poly(n),
it holds that solving SIS is at least as hard as solving γ-SIVP on
arbitrary n-dimensional lattice, for some approximation factor
γ = B · poly(n).

(SIVP = shortest independent vectors problems.

Objective: find n short linearly independent vectors in the lattice)

▶ the poly quantities have been improved in more recent works

▶ for typical parameters: SIS ∼= ISIS

▶ see [Pei16] for a survey

[Pei16] Peikert. A decade of lattice cryptography. Foundations and trends in theoretical computer science



45 / 74

SIS is a lattice problem

SIS (Short Integer Solution)

Given A ← U(Zm×n
q ) (with n log q < m)

Find x ∈ Zm with ∥x∥ ≤ B and x ̸= 0 s.t. xT A = 0 modq.

0

B

Λ⊥q (A) = {x ∈ Zm | xT A = 0 mod q}

SIS ≈ approx-SVP in random Λ⊥q (A)

Average-case approx-SVP problem



45 / 74

SIS is a lattice problem

SIS (Short Integer Solution)

Given A ← U(Zm×n
q ) (with n log q < m)

Find x ∈ Zm with ∥x∥ ≤ B and x ̸= 0 s.t. xT A = 0 modq.

0

B

Λ⊥q (A) = {x ∈ Zm | xT A = 0 mod q}

SIS ≈ approx-SVP in random Λ⊥q (A)

Average-case approx-SVP problem



45 / 74

SIS is a lattice problem

SIS (Short Integer Solution)

Given A ← U(Zm×n
q ) (with n log q < m)

Find x ∈ Zm with ∥x∥ ≤ B and x ̸= 0 s.t. xT A = modq.

0B

Λ⊥q (A) = {x ∈ Zm | xT A = 0 mod q}

SIS ≈ approx-SVP in random Λ⊥q (A)

Average-case approx-SVP problem



45 / 74

SIS is a lattice problem

SIS (Short Integer Solution)

Given A ← U(Zm×n
q ), y ← U(Zn

q) (with n log q < m)

Find x ∈ Zm with ∥x∥ ≤ B s.t. xT A = yT modq.

0
B

Λ⊥q (A) = {x ∈ Zm | xT A = 0 mod q}

ISIS ≈ approx-CVP in random Λ⊥q (A)

Average-case approx-CVP problem



46 / 74

Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice Λ⊥q (A) together with
a short basis of it.

Idea: start with a short basis, then perturb and randomize it

SIS KeyGen

pk = uniform random A

sk = good basis S of Λ⊥q (A)

≥ SIS problem

[Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.



46 / 74

Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice Λ⊥q (A) together with
a short basis of it.

Idea: start with a short basis, then perturb and randomize it

SIS KeyGen

pk = uniform random A

sk = good basis S of Λ⊥q (A)

≥ SIS problem

[Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.



46 / 74

Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice Λ⊥q (A) together with
a short basis of it.

Idea: start with a short basis, then perturb and randomize it

SIS KeyGen

pk = uniform random A

sk = good basis S of Λ⊥q (A)

≥ SIS problem

[Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.



47 / 74

Hash-and-sign signature scheme from SIS

B
st

Sign: hash message to t ∈ Zm
q ,

sample nearby s ∈ Λ⊥q (A) with sk

Verify: s ∈ Λ⊥q (A) ∧ ∥t − s∥ ≤ B

Security proof

key-recovery ≥ SIS problem

signature forgery ≥ ISIS problem
(assuming no leakage from sampling

can be proven in Random Oracle Model) .

Signature scheme based on hard
average-case lattice problem



47 / 74

Hash-and-sign signature scheme from SIS

B
st

Sign: hash message to t ∈ Zm
q ,

sample nearby s ∈ Λ⊥q (A) with sk

Verify: s ∈ Λ⊥q (A) ∧ ∥t − s∥ ≤ B

Security proof

key-recovery ≥ SIS problem

signature forgery ≥ ISIS problem
(assuming no leakage from sampling

can be proven in Random Oracle Model) .

Signature scheme based on hard
average-case lattice problem



48 / 74

The LWE problem

LWE (Learning With Errors) [Reg05]

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q

Recover s or e

Remark. Sometimes s is small in Zq (not uniform)
▶ this is (almost) equivalent
▶ prove it (hint: you are allowed to change m)

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



48 / 74

The LWE problem

LWE (Learning With Errors) [Reg05]

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q

Recover s or e

Remark. Sometimes s is small in Zq (not uniform)
▶ this is (almost) equivalent
▶ prove it (hint: you are allowed to change m)

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



48 / 74

The LWE problem

LWE (Learning With Errors) [Reg05]

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q

Recover s or e

Solving BDD

Solving LWE Solving approx-SVP

in any lattice ≳

with non-negligible ≳ in any lattice

of rank m

probability quantumly! of rank n

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



48 / 74

The LWE problem

LWE (Learning With Errors) [Reg05]

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q

Recover s or e

Solving BDD Solving LWE Solving approx-SVP
in any lattice ≳ with non-negligible ≳ in any lattice

of rank m probability quantumly! of rank n

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



49 / 74

LWE is quantumly as hard as worst-case lattice problems

Theorem [Reg05]

For any m = poly(n), modulus q ≤ 2poly(n) and B ≥ 2
√

n, solving LWE is
at least as hard as quantumly solving γ-SIVP on arbitrary
n-dimensional lattice, for some approximation factor γ = Õ(n · q/B).

N the reduction is for a variant of LWE where s and e are sampled from a discrete

Gaussian distribution of parameter B N

Remark: the reduction can be made fully classical [Pei09, BLPRS13]

[Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



49 / 74

LWE is quantumly as hard as worst-case lattice problems

Theorem [Reg05]

For any m = poly(n), modulus q ≤ 2poly(n) and B ≥ 2
√

n, solving LWE is
at least as hard as quantumly solving γ-SIVP on arbitrary
n-dimensional lattice, for some approximation factor γ = Õ(n · q/B).

N the reduction is for a variant of LWE where s and e are sampled from a discrete

Gaussian distribution of parameter B N

Remark: the reduction can be made fully classical [Pei09, BLPRS13]

[Pei09] Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC.

[BLPRS13] Brakerski, Langlois, Peikert, Regev, and Stehlé. Classical hardness of learning with errors. STOC



50 / 74

LWE is a lattice problem

LWE instance

(
A , b = A s

+ e mod q
)

, e small

target b = v + e
lattice Λq(A)

BDD

0

b

As mod q

lattice Λq

((
A b
0n 1

))
contains short e′ := (e⊥, 1)⊥

uSVP

0

e′



50 / 74

LWE is a lattice problem

LWE instance

(
A , b = A s

+ e mod q
)

, e small

target b = v + e
lattice Λq(A)

BDD

0

b

As mod q

lattice Λq

((
A b
0n 1

))
contains short e′ := (e⊥, 1)⊥

uSVP

0

e′



50 / 74

LWE is a lattice problem

LWE instance

(
A , b = A s

+ e mod q
)

, e small

target b = v + e
lattice Λq(A)

BDD

0

b

As mod q

lattice Λq

((
A b
0n 1

))
contains short e′ := (e⊥, 1)⊥

uSVP

0

e′



51 / 74

Decision variant of LWE (1)

decision-LWE (1)

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q or b ← U(Zm

q )

Guess whether b is uniform or not.

decision LWE ∼⇐===⇒ (search) LWE

⇒ decision problems can be easier to use for crypto



51 / 74

Decision variant of LWE (1)

decision-LWE (1)

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q or b ← U(Zm

q )

Guess whether b is uniform or not.

decision LWE ∼⇐===⇒ (search) LWE

⇒ decision problems can be easier to use for crypto



51 / 74

Decision variant of LWE (1)

decision-LWE (1)

Sample A ← U(Zm×n
q ), s ← U(Zn

q) and e ← U({−B, · · · , B}m)

Given A and b , where b := A s
+ e mod q or b ← U(Zm

q )

Guess whether b is uniform or not.

decision LWE ∼⇐===⇒ (search) LWE

⇒ decision problems can be easier to use for crypto



52 / 74

Decision variant of LWE (2)

if dec-LWE is hard:

(
A , b = A s

+ e mod q
)
≈
(

A , b
)

For a random q-ary lattice:

BDD target b ≈ uniform random target
BDD:

random q-ary lattice with planted short vector
≈

random q-ary lattice
uSVP:

useful in security proofs!



52 / 74

Decision variant of LWE (2)

if dec-LWE is hard:

(
A , b = A s

+ e mod q
)
≈
(

A , b
)

For a random q-ary lattice:

BDD target b ≈ uniform random target
BDD:

random q-ary lattice with planted short vector
≈

random q-ary lattice
uSVP:

useful in security proofs!



52 / 74

Decision variant of LWE (2)

if dec-LWE is hard:

(
A , b = A s

+ e mod q
)
≈
(

A , b
)

For a random q-ary lattice:

BDD target b ≈ uniform random target
BDD:

random q-ary lattice with planted short vector
≈

random q-ary lattice
uSVP:

useful in security proofs!



52 / 74

Decision variant of LWE (2)

if dec-LWE is hard:

(
A , b = A s

+ e mod q
)
≈
(

A , b
)

For a random q-ary lattice:

BDD target b ≈ uniform random target
BDD:

random q-ary lattice with planted short vector
≈

random q-ary lattice
uSVP:

useful in security proofs!



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P) KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P) KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P)

t

KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P)

m = 0

c

KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P)

t

m = 1

c

KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P)

m = 0

c

KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P)

m = 1

c

KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



53 / 74

1 bit encryption scheme from LWE

Λ⊥q (P)

KeyGen:

pk = (A, b = As + e), P =

(
A b
0 1

)
.

sk = e, short vector
(

e
1

)
∈ Λq(P).

Encrypt(m, pk) :
Generate: BDD instance t = v + e′ in Λ⊥q (P)

Output: c = t +
⌊

q
2

⌉
·m · (0, . . . , 0, 1)⊤.

Decrypt(c, sk):

Compute: x =

〈
c,

(
e
1

)〉
mod q.

Output: m′ =
{

0 , if − q
4 ≤ x ≤ q

4
1 , else

.

security proof

dec-LWE ⇒
Λ⊥q (P) ≈ random q-lattice

(no information about sk)

dec-LWE ⇒
t ≈ uniform random target

c ≈ uniform random target
(no information about m)



54 / 74

Summary on SIS and LWE

SIS and LWE are average-case problems

⇒ Good for crypto
(negligible probability to sample a weak key)

family of random q-ary lattices

(I)SIS ∼←−→ average-case SVP/CVP

LWE ∼←−→ average case BDD/uSVP



54 / 74

Summary on SIS and LWE

SIS and LWE are average-case problems
⇒ Good for crypto

(negligible probability to sample a weak key)

family of random q-ary lattices

(I)SIS ∼←−→ average-case SVP/CVP

LWE ∼←−→ average case BDD/uSVP



54 / 74

Summary on SIS and LWE

SIS and LWE are average-case problems
⇒ Good for crypto

(negligible probability to sample a weak key)

family of random q-ary lattices

(I)SIS ∼←−→ average-case SVP/CVP

LWE ∼←−→ average case BDD/uSVP



54 / 74

Summary on SIS and LWE

SIS and LWE are average-case problems
⇒ Good for crypto

(negligible probability to sample a weak key)

family of random q-ary lattices

(I)SIS ∼←−→ average-case SVP/CVP

LWE ∼←−→ average case BDD/uSVP



55 / 74

LWE vs SIS

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

(I)SIS

Cr
yp

to
gr

ap
hy

2−Ω(n) 2−Ω(n0.5)

Promise factor δ

2O(n)

2O(n0.5)

poly

LWE

decision-LWE ∼⇐===⇒ (search) LWE ∼⇐====⇒
quantum

SIS

Exercise
Prove that decision-LWE ≤ SIS

Hint: See decryption of LWE encryption scheme



55 / 74

LWE vs SIS

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

(I)SIS

Cr
yp

to
gr

ap
hy

2−Ω(n) 2−Ω(n0.5)

Promise factor δ

2O(n)

2O(n0.5)

poly

LWE

decision-LWE ∼⇐===⇒ (search) LWE ∼⇐====⇒
quantum

SIS

Exercise
Prove that decision-LWE ≤ SIS

Hint: See decryption of LWE encryption scheme



55 / 74

LWE vs SIS

Time

Approximation
factor α

Cr
yp

to
gr

ap
hy

2O(n)2O(n0.5)poly

(I)SIS

Cr
yp

to
gr

ap
hy

2−Ω(n) 2−Ω(n0.5)

Promise factor δ

2O(n)

2O(n0.5)

poly

LWE

decision-LWE ∼⇐===⇒ (search) LWE ∼⇐====⇒
quantum

SIS

Exercise
Prove that decision-LWE ≤ SIS

Hint: See decryption of LWE encryption scheme



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems
▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems
▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems

▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems
▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems
▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems
▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]

[Pei16] Peikert. A decade of lattice cryptography. Foundations and trends in theoretical computer science



56 / 74

Recap

(decision) LWE / SIS:

▶ lattice problems over random q-ary lattices

▶ all somewhat equivalent (quantumly)

▶ as hard as worst-case lattice problems
▶ no major flaw in the design
▶ but cryptographic constructions choose smaller parameters than the

ones needed for the reductions

▶ best known algorithm has time 2Ω(m) (for well chosen parameters q and
B)

▶ by transforming LWE and (I)SIS into SVP/CVP instances

▶ useful survey [Pei16]

[Pei16] Peikert. A decade of lattice cryptography. Foundations and trends in theoretical computer science



Algebraic lattices



57 / 74

Motivation

▶ A lattice of dimension n is described by some basis B ∈ Rn×n

⇒ n2 coefficients, (n = 1000, n2 = 106)

▶ Storage: multiple MB or GB of data

▶ Efficiency: matrix-matrix product O(n3), matrix-vector O(n2)

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure



57 / 74

Motivation

▶ A lattice of dimension n is described by some basis B ∈ Rn×n

⇒ n2 coefficients, (n = 1000, n2 = 106)

▶ Storage: multiple MB or GB of data

▶ Efficiency: matrix-matrix product O(n3), matrix-vector O(n2)

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure



57 / 74

Motivation

▶ A lattice of dimension n is described by some basis B ∈ Rn×n

⇒ n2 coefficients, (n = 1000, n2 = 106)

▶ Storage: multiple MB or GB of data

▶ Efficiency: matrix-matrix product O(n3), matrix-vector O(n2)

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure



57 / 74

Motivation

▶ A lattice of dimension n is described by some basis B ∈ Rn×n

⇒ n2 coefficients, (n = 1000, n2 = 106)

▶ Storage: multiple MB or GB of data

▶ Efficiency: matrix-matrix product O(n3), matrix-vector O(n2)

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure



57 / 74

Motivation

▶ A lattice of dimension n is described by some basis B ∈ Rn×n

⇒ n2 coefficients, (n = 1000, n2 = 106)

▶ Storage: multiple MB or GB of data

▶ Efficiency: matrix-matrix product O(n3), matrix-vector O(n2)

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure



57 / 74

Motivation

▶ A lattice of dimension n is described by some basis B ∈ Rn×n

⇒ n2 coefficients, (n = 1000, n2 = 106)

▶ Storage: multiple MB or GB of data

▶ Efficiency: matrix-matrix product O(n3), matrix-vector O(n2)

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure



58 / 74

Number fields

Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)

▶ K = Q
▶ K = Q[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic field

▶ K = Q[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime field

Ring of integers: OK ⊂ K, for this talk OK = Z[X]/P(X)
(more generally Z[X]/P(X) ⊆ OK but OK can be larger)

▶ OK = Z
▶ OK = Z[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic ring

▶ OK = Z[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime ring of integers



58 / 74

Number fields

Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)

▶ K = Q
▶ K = Q[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic field

▶ K = Q[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime field

Ring of integers: OK ⊂ K, for this talk OK = Z[X]/P(X)
(more generally Z[X]/P(X) ⊆ OK but OK can be larger)

▶ OK = Z
▶ OK = Z[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic ring

▶ OK = Z[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime ring of integers



58 / 74

Number fields

Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)

▶ K = Q
▶ K = Q[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic field

▶ K = Q[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime field

Ring of integers: OK ⊂ K, for this talk OK = Z[X]/P(X)
(more generally Z[X]/P(X) ⊆ OK but OK can be larger)

▶ OK = Z
▶ OK = Z[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic ring

▶ OK = Z[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime ring of integers



58 / 74

Number fields

Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)

▶ K = Q
▶ K = Q[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic field

▶ K = Q[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime field

Ring of integers: OK ⊂ K, for this talk OK = Z[X]/P(X)
(more generally Z[X]/P(X) ⊆ OK but OK can be larger)

▶ OK = Z
▶ OK = Z[X]/(Xd + 1) with d = 2ℓ ⇝ power-of-two cyclotomic ring

▶ OK = Z[X]/(Xd − X − 1) with d prime ⇝ NTRUPrime ring of integers



59 / 74

Embeddings

(K = Q[X]/P(X), α1, · · · , αd complex roots of P(X))

Coefficient embedding: Σ : K → Rd∑d−1
i=0 yi X i 7→ (y0, · · · , yd−1)

Canonical embedding: σ : K → Cd

y(X) 7→ (y(α1), · · · , y(αd))

▶ both embeddings induce a (different) geometry on K

Which embedding should we choose?
▶ coefficient embedding is used for constructions (efficient

implementation)

▶ canonical embedding is used in cryptanalysis / reductions
(nice mathematical properties)

▶ for fields used in crypto, both geometries are ≈ the same



59 / 74

Embeddings

(K = Q[X]/P(X), α1, · · · , αd complex roots of P(X))

Coefficient embedding: Σ : K → Rd∑d−1
i=0 yi X i 7→ (y0, · · · , yd−1)

Canonical embedding: σ : K → Cd

y(X) 7→ (y(α1), · · · , y(αd))

▶ both embeddings induce a (different) geometry on K

Which embedding should we choose?
▶ coefficient embedding is used for constructions (efficient

implementation)

▶ canonical embedding is used in cryptanalysis / reductions
(nice mathematical properties)

▶ for fields used in crypto, both geometries are ≈ the same



59 / 74

Embeddings

(K = Q[X]/P(X), α1, · · · , αd complex roots of P(X))

Coefficient embedding: Σ : K → Rd∑d−1
i=0 yi X i 7→ (y0, · · · , yd−1)

Canonical embedding: σ : K → Cd

y(X) 7→ (y(α1), · · · , y(αd))

▶ both embeddings induce a (different) geometry on K

Which embedding should we choose?
▶ coefficient embedding is used for constructions (efficient

implementation)

▶ canonical embedding is used in cryptanalysis / reductions
(nice mathematical properties)

▶ for fields used in crypto, both geometries are ≈ the same



59 / 74

Embeddings

(K = Q[X]/P(X), α1, · · · , αd complex roots of P(X))

Coefficient embedding: Σ : K → Rd∑d−1
i=0 yi X i 7→ (y0, · · · , yd−1)

Canonical embedding: σ : K → Cd

y(X) 7→ (y(α1), · · · , y(αd))

▶ both embeddings induce a (different) geometry on K

Which embedding should we choose?
▶ coefficient embedding is used for constructions (efficient

implementation)

▶ canonical embedding is used in cryptanalysis / reductions
(nice mathematical properties)

▶ for fields used in crypto, both geometries are ≈ the same



60 / 74

Ideals

Ideal: I ⊆ OK is an ideal if ▶ x + y ∈ I for all x, y ∈ I
▶ a · x ∈ I for all a ∈ OK and x ∈ I

▶ I1 = {2a | a ∈ Z} and J1 = {6a | a ∈ Z} in OK = Z

▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} in OK = Z[X]/(X2 + 1)

Principal ideals: ⟨g⟩ := {g · a | a ∈ OK}
▶ I1 = {2a | a ∈ Z} = ⟨2⟩
▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} = ⟨1 + X⟩



60 / 74

Ideals

Ideal: I ⊆ OK is an ideal if ▶ x + y ∈ I for all x, y ∈ I
▶ a · x ∈ I for all a ∈ OK and x ∈ I

▶ I1 = {2a | a ∈ Z} and J1 = {6a | a ∈ Z} in OK = Z

▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} in OK = Z[X]/(X2 + 1)

Principal ideals: ⟨g⟩ := {g · a | a ∈ OK}
▶ I1 = {2a | a ∈ Z} = ⟨2⟩
▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} = ⟨1 + X⟩



60 / 74

Ideals

Ideal: I ⊆ OK is an ideal if ▶ x + y ∈ I for all x, y ∈ I
▶ a · x ∈ I for all a ∈ OK and x ∈ I

▶ I1 = {2a | a ∈ Z} and J1 = {6a | a ∈ Z} in OK = Z

▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} in OK = Z[X]/(X2 + 1)

Principal ideals: ⟨g⟩ := {g · a | a ∈ OK}

▶ I1 = {2a | a ∈ Z} = ⟨2⟩
▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} = ⟨1 + X⟩



60 / 74

Ideals

Ideal: I ⊆ OK is an ideal if ▶ x + y ∈ I for all x, y ∈ I
▶ a · x ∈ I for all a ∈ OK and x ∈ I

▶ I1 = {2a | a ∈ Z} and J1 = {6a | a ∈ Z} in OK = Z

▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} in OK = Z[X]/(X2 + 1)

Principal ideals: ⟨g⟩ := {g · a | a ∈ OK}
▶ I1 = {2a | a ∈ Z} = ⟨2⟩
▶ I2 = {a + b · X | a + b = 0 mod 2, a, b ∈ Z} = ⟨1 + X⟩



61 / 74

Ideal lattices

OK is a lattice via the coefficient embedding Σ:
▶ OK = 1 · Z + X · Z + · · ·+ Xd−1 · Z
▶ Σ(OK) = Σ(1) · Z + · · ·+ Σ(Xd−1) · Z

Σ(OK) is a lattice of rank d in Zd with basis (Σ(X i))0≤i<d

⟨g⟩ is a lattice:
▶ ⟨g⟩ = g · OK = g · 1 · Z + g · X · Z + · · ·+ g · Xd−1 · Z
▶ Σ(⟨g⟩) = Σ(g) · Z + · · ·+ Σ(g · Xd−1) · Z

Σ(⟨g⟩) is a lattice of rank d in Zd with basis (Σ(g · X i))0≤i<d

(this is also true for non principal ideals)

(we can replace Σ by σ and Zd by Cd )



61 / 74

Ideal lattices

OK is a lattice via the coefficient embedding Σ:
▶ OK = 1 · Z + X · Z + · · ·+ Xd−1 · Z
▶ Σ(OK) = Σ(1) · Z + · · ·+ Σ(Xd−1) · Z

Σ(OK) is a lattice of rank d in Zd with basis (Σ(X i))0≤i<d

⟨g⟩ is a lattice:
▶ ⟨g⟩ = g · OK = g · 1 · Z + g · X · Z + · · ·+ g · Xd−1 · Z
▶ Σ(⟨g⟩) = Σ(g) · Z + · · ·+ Σ(g · Xd−1) · Z

Σ(⟨g⟩) is a lattice of rank d in Zd with basis (Σ(g · X i))0≤i<d

(this is also true for non principal ideals)

(we can replace Σ by σ and Zd by Cd )



61 / 74

Ideal lattices

OK is a lattice via the coefficient embedding Σ:
▶ OK = 1 · Z + X · Z + · · ·+ Xd−1 · Z
▶ Σ(OK) = Σ(1) · Z + · · ·+ Σ(Xd−1) · Z

Σ(OK) is a lattice of rank d in Zd with basis (Σ(X i))0≤i<d

⟨g⟩ is a lattice:
▶ ⟨g⟩ = g · OK = g · 1 · Z + g · X · Z + · · ·+ g · Xd−1 · Z
▶ Σ(⟨g⟩) = Σ(g) · Z + · · ·+ Σ(g · Xd−1) · Z

Σ(⟨g⟩) is a lattice of rank d in Zd with basis (Σ(g · X i))0≤i<d

(this is also true for non principal ideals)

(we can replace Σ by σ and Zd by Cd )



61 / 74

Ideal lattices

OK is a lattice via the coefficient embedding Σ:
▶ OK = 1 · Z + X · Z + · · ·+ Xd−1 · Z
▶ Σ(OK) = Σ(1) · Z + · · ·+ Σ(Xd−1) · Z

Σ(OK) is a lattice of rank d in Zd with basis (Σ(X i))0≤i<d

⟨g⟩ is a lattice:
▶ ⟨g⟩ = g · OK = g · 1 · Z + g · X · Z + · · ·+ g · Xd−1 · Z
▶ Σ(⟨g⟩) = Σ(g) · Z + · · ·+ Σ(g · Xd−1) · Z

Σ(⟨g⟩) is a lattice of rank d in Zd with basis (Σ(g · X i))0≤i<d

(this is also true for non principal ideals)

(we can replace Σ by σ and Zd by Cd )



62 / 74

Ideal lattices (2)

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

X
1

Σ(⟨1 + X⟩)

Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0

− gd−1 · · · − g1

g1

g0 · · · − g2

...

...
...

...

gd−1

gd−2 . . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



62 / 74

Ideal lattices (2)

X
1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Σ(⟨1 + X⟩)
Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0

− gd−1 · · · − g1

g1

g0 · · · − g2

...

...
...

...

gd−1

gd−2 . . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



62 / 74

Ideal lattices (2)

X
1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Σ(⟨1 + X⟩)
Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0

− gd−1 · · · − g1

g1

g0 · · · − g2

...

...
...

...

gd−1

gd−2 . . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



62 / 74

Ideal lattices (2)

X
1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Σ(⟨1 + X⟩)
Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0

− gd−1 · · · − g1

g1

g0 · · · − g2

...

...
...

...

gd−1

gd−2 . . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



62 / 74

Ideal lattices (2)

X
1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Σ(⟨1 + X⟩)
Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0 − gd−1

· · · − g1

g1 g0

· · · − g2

...
...

...
...

gd−1 gd−2

. . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



62 / 74

Ideal lattices (2)

X
1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Σ(⟨1 + X⟩)
Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0 − gd−1 · · · − g1
g1 g0 · · · − g2
...

...
...

...
gd−1 gd−2 . . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



62 / 74

Ideal lattices (2)

X
1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

Σ(⟨1 + X⟩)
Σ(OK)

We have

g · X =
d−1∑
i=0

gi X i+1 = gd−1Xd +
d−2∑
i=0

gi X i+1

= −gd−1 +
d−2∑
i=0

gi X i+1 mod Xd + 1

Basis of ⟨g⟩: g , g · X, · · · , g · Xd−1

Example in K = Q[X]/(Xd + 1
g0 − gd−1 · · · − g1
g1 g0 · · · − g2
...

...
...

...
gd−1 gd−2 . . . g0



Storage: n2 coefficients → n
Time: O(n2)→ O(n log(n))
(fast polynomial multiplication via FFT)



63 / 74

Module lattices

(Free) module:

M = {B · x | x ∈ Ok
K} for some matrix B ∈ Ok×k

K with detK(B) ̸= 0

▶ k is the module rank

▶ B is a module basis of M
(if the module is not free, it has a ‘‘pseudo-basis’’ instead)

Σ(M) is a lattice:

▶ of Z-rank n := d · k, included in Zn

▶ with basis (Σ(bi X j))1≤i≤k
0≤j<d

(bi columns of B)



63 / 74

Module lattices

(Free) module:

M = {B · x | x ∈ Ok
K} for some matrix B ∈ Ok×k

K with detK(B) ̸= 0

▶ k is the module rank

▶ B is a module basis of M
(if the module is not free, it has a ‘‘pseudo-basis’’ instead)

Σ(M) is a lattice:

▶ of Z-rank n := d · k, included in Zn

▶ with basis (Σ(bi X j))1≤i≤k
0≤j<d

(bi columns of B)



63 / 74

Module lattices

(Free) module:

M = {B · x | x ∈ Ok
K} for some matrix B ∈ Ok×k

K with detK(B) ̸= 0

▶ k is the module rank

▶ B is a module basis of M
(if the module is not free, it has a ‘‘pseudo-basis’’ instead)

Σ(M) is a lattice:

▶ of Z-rank n := d · k, included in Zn

▶ with basis (Σ(bi X j))1≤i≤k
0≤j<d

(bi columns of B)



64 / 74

Modules vs ideals

Ideal = Module of rank 1
(principal ideal = free module of rank 1)

In K = Q[X]/(Xd + 1):

Ma =


a1 −ad · · · −a2
a2 a1 · · · −a3
...

... ...
...

ad ad−1 . . . a1



basis of a
principal ideal lattice

Mb11 Mb12 Mb1k

Mb21 Mb22 Mb2k

Mbk1 Mbk2 Mbkk

· · ·

· · ·

· · ·

...
...

...
...

d

dk

basis of a free module lattice
of rank k



64 / 74

Modules vs ideals

Ideal = Module of rank 1
(principal ideal = free module of rank 1)

In K = Q[X]/(Xd + 1):

Ma =


a1 −ad · · · −a2
a2 a1 · · · −a3
...

... ...
...

ad ad−1 . . . a1



basis of a
principal ideal lattice

Mb11 Mb12 Mb1k

Mb21 Mb22 Mb2k

Mbk1 Mbk2 Mbkk

· · ·

· · ·

· · ·

...
...

...
...

d

dk

basis of a free module lattice
of rank k



65 / 74

Algorithmic problems

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

γ · λ1

SVP

γ · λn

SIVP

γ-SVP γ-SIVP
shortest vector problem shortest independent

vector problem

Notations:
▶ id-X = problem X restricted to ideal lattices
▶ mod-Xk = problem X restricted to module lattices of rank k

(worst-case: we want algorithms for all ideal/module lattices)



65 / 74

Algorithmic problems

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

γ · λ1

SVP

γ · λn

SIVP

γ-SVP γ-SIVP
shortest vector problem shortest independent

vector problem

Notations:
▶ id-X = problem X restricted to ideal lattices
▶ mod-Xk = problem X restricted to module lattices of rank k

(worst-case: we want algorithms for all ideal/module lattices)



66 / 74

Hardness of module SVP

Asymptotics:
Time

Approx

2n2n0.5poly

2n

2n0.5

poly

SVP and mod-SVPk
(k ≥ 2)

Cr
yp

to
gr

ap
hy
Time

Approx

quantum

classical

2n2n0.5poly

2n

2n0.5

poly

id-SVP [CDW17]
(in cyclotomic fields)

Cr
yp

to
gr

ap
hy

Time

Approx

quantum

classical

2n2n0.5poly

2n

2n0.5

poly

id-SVP [PHS19,BR20]
(with 2O(n) pre-processing)

Cr
yp

to
gr

ap
hy

[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.



67 / 74

Ring and Module-LWE

(search) mod-LWEk

Parameters: q and B
Problem: Sample

▶ A← U((OK /qOK)m×k)

▶ secret s ∈ (OK /qOK)k

▶ error e ∈ Om
K with coefficients in {−B, · · · , B}

Given A and b = A · s + e mod q, recover s

(size of s and e can be defined using Σ or σ)

RLWE = mod-LWE1



67 / 74

Ring and Module-LWE

(search) mod-LWEk

Parameters: q and B
Problem: Sample

▶ A← U((OK /qOK)m×k)

▶ secret s ∈ (OK /qOK)k

▶ error e ∈ Om
K with coefficients in {−B, · · · , B}

Given A and b = A · s + e mod q, recover s

(size of s and e can be defined using Σ or σ)

RLWE = mod-LWE1



68 / 74

mod-LWE vs mod-SIVP

mod-uSVPm+1 ≥ mod-BDDm ≥ mod-LWEk ≥ mod-SIVPk
quantumly!

How large should m be?

▶ as small as possible

▶ but so that the closest point to b is As

▶ m = k is not sufficient

▶ m = k + 1 might be sufficient depending on B and q
▶ we need roughly m = k · log(q)

log(q/B)

▶ for k = 1, m = 2 is possible if B ≲ √q



68 / 74

mod-LWE vs mod-SIVP

mod-uSVPm+1 ≥ mod-BDDm ≥ mod-LWEk ≥ mod-SIVPk
quantumly!

How large should m be?

▶ as small as possible

▶ but so that the closest point to b is As

▶ m = k is not sufficient

▶ m = k + 1 might be sufficient depending on B and q
▶ we need roughly m = k · log(q)

log(q/B)

▶ for k = 1, m = 2 is possible if B ≲ √q



68 / 74

mod-LWE vs mod-SIVP

mod-uSVPm+1 ≥ mod-BDDm ≥ mod-LWEk ≥ mod-SIVPk
quantumly!

How large should m be?

▶ as small as possible

▶ but so that the closest point to b is As

▶ m = k is not sufficient

▶ m = k + 1 might be sufficient depending on B and q
▶ we need roughly m = k · log(q)

log(q/B)

▶ for k = 1, m = 2 is possible if B ≲ √q



68 / 74

mod-LWE vs mod-SIVP

mod-uSVPm+1 ≥ mod-BDDm ≥ mod-LWEk ≥ mod-SIVPk
quantumly!

How large should m be?

▶ as small as possible

▶ but so that the closest point to b is As

▶ m = k is not sufficient

▶ m = k + 1 might be sufficient depending on B and q
▶ we need roughly m = k · log(q)

log(q/B)

▶ for k = 1, m = 2 is possible if B ≲ √q



69 / 74

NTRU [HPS98]

(search) NTRU
Parameters: q ≥ B > 1

Objective: Sample f , g ∈ OK with coefficients in {−B, · · · , B}.
Given h = f · g−1 mod q, recover (f , g)

dec-NTRU
Parameters: q, B

Objective: distinguish between h as above and h uniform in
OK /(qOK)

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.



69 / 74

NTRU [HPS98]

(search) NTRU
Parameters: q ≥ B > 1

Objective: Sample f , g ∈ OK with coefficients in {−B, · · · , B}.
Given h = f · g−1 mod q, recover (f , g)

dec-NTRU
Parameters: q, B

Objective: distinguish between h as above and h uniform in
OK /(qOK)

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.



70 / 74

NTRU as a lattice

Recall: h = f · g−1 mod q

Definition (NTRU Lattice)

Lh,q := {(a, b) ∈ R2 : h · b = a mod q}

▶ d = deg(R), rank 2 module, dimension n = 2d, det(Lh,q) = qd .
▶ gh(Lh,q) ≈

√
d/πe · √q

Short vector(s)
The rotations (x i · f , x i · g) are unusually short vectors in Lh,q.

bad basis =

(
q h
0 1

)
, good basis =

(
f F
g G

)



70 / 74

NTRU as a lattice

Recall: h = f · g−1 mod q

Definition (NTRU Lattice)

Lh,q := {(a, b) ∈ R2 : h · b = a mod q}

▶ d = deg(R), rank 2 module, dimension n = 2d, det(Lh,q) = qd .

▶ gh(Lh,q) ≈
√

d/πe · √q

Short vector(s)
The rotations (x i · f , x i · g) are unusually short vectors in Lh,q.

bad basis =

(
q h
0 1

)
, good basis =

(
f F
g G

)



70 / 74

NTRU as a lattice

Recall: h = f · g−1 mod q

Definition (NTRU Lattice)

Lh,q := {(a, b) ∈ R2 : h · b = a mod q}

▶ d = deg(R), rank 2 module, dimension n = 2d, det(Lh,q) = qd .
▶ gh(Lh,q) ≈

√
d/πe · √q

Short vector(s)
The rotations (x i · f , x i · g) are unusually short vectors in Lh,q.

bad basis =

(
q h
0 1

)
, good basis =

(
f F
g G

)



70 / 74

NTRU as a lattice

Recall: h = f · g−1 mod q

Definition (NTRU Lattice)

Lh,q := {(a, b) ∈ R2 : h · b = a mod q}

▶ d = deg(R), rank 2 module, dimension n = 2d, det(Lh,q) = qd .
▶ gh(Lh,q) ≈

√
d/πe · √q

Short vector(s)
The rotations (x i · f , x i · g) are unusually short vectors in Lh,q.

bad basis =

(
q h
0 1

)
, good basis =

(
f F
g G

)



70 / 74

NTRU as a lattice

Recall: h = f · g−1 mod q

Definition (NTRU Lattice)

Lh,q := {(a, b) ∈ R2 : h · b = a mod q}

▶ d = deg(R), rank 2 module, dimension n = 2d, det(Lh,q) = qd .
▶ gh(Lh,q) ≈

√
d/πe · √q

Short vector(s)
The rotations (x i · f , x i · g) are unusually short vectors in Lh,q.

bad basis =

(
q h
0 1

)
, good basis =

(
f F
g G

)



71 / 74

Two regimes of NTRU

If ∥(f , g)∥ ≥ poly(log n) · gh(Lh,q)

▶ h is statistically close to
uniform mod q [SS11,WW18]

▶ dec-NTRU is statistically hard

If ∥(f , g)∥ ≤ gh(Lh,q)

▶ h is not statistically close
to uniform mod q

▶ NTRU is a special case of
mod-uSVP2

uSVP regime ⇒ short structured basis

⇒ efficient encryption/signature scheme

(e.g. NTRUEncrypt, NTRUSign, Falcon)



71 / 74

Two regimes of NTRU

If ∥(f , g)∥ ≥ poly(log n) · gh(Lh,q)

▶ h is statistically close to
uniform mod q [SS11,WW18]

▶ dec-NTRU is statistically hard

If ∥(f , g)∥ ≤ gh(Lh,q)

▶ h is not statistically close
to uniform mod q

▶ NTRU is a special case of
mod-uSVP2

uSVP regime ⇒ short structured basis

⇒ efficient encryption/signature scheme

(e.g. NTRUEncrypt, NTRUSign, Falcon)

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.

[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.



71 / 74

Two regimes of NTRU

If ∥(f , g)∥ ≥ poly(log n) · gh(Lh,q)

▶ h is statistically close to
uniform mod q [SS11,WW18]

▶ dec-NTRU is statistically hard

If ∥(f , g)∥ ≤ gh(Lh,q)

▶ h is not statistically close
to uniform mod q

▶ NTRU is a special case of
mod-uSVP2

uSVP regime ⇒ short structured basis

⇒ efficient encryption/signature scheme

(e.g. NTRUEncrypt, NTRUSign, Falcon)

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.

[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.



71 / 74

Two regimes of NTRU

If ∥(f , g)∥ ≥ poly(log n) · gh(Lh,q)

▶ h is statistically close to
uniform mod q [SS11,WW18]

▶ dec-NTRU is statistically hard

If ∥(f , g)∥ ≤ gh(Lh,q)

▶ h is not statistically close
to uniform mod q

▶ NTRU is a special case of
mod-uSVP2

uSVP regime ⇒ short structured basis

⇒ efficient encryption/signature scheme

(e.g. NTRUEncrypt, NTRUSign, Falcon)

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.

[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.



72 / 74

NTRU public vs secret basis

public and secret bases generated from the NTRU problem

1 n0

√q

q Public basis

Secret basis

index i

lo
g
∥ ∥ b∗ i

∥ ∥



73 / 74

Recap

▶ Algebraic structure reduces sizes and improves efficiency

▶ Can still define average-case problems

▶ Most worst-case to average-case reductions still apply

▶ Ideal lattices = rank 1 modules can be vulnerable

▶ NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2
(seems safe so far, but arguably their weakest point)



73 / 74

Recap

▶ Algebraic structure reduces sizes and improves efficiency

▶ Can still define average-case problems

▶ Most worst-case to average-case reductions still apply

▶ Ideal lattices = rank 1 modules can be vulnerable

▶ NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2
(seems safe so far, but arguably their weakest point)



73 / 74

Recap

▶ Algebraic structure reduces sizes and improves efficiency

▶ Can still define average-case problems

▶ Most worst-case to average-case reductions still apply

▶ Ideal lattices = rank 1 modules can be vulnerable

▶ NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2
(seems safe so far, but arguably their weakest point)



73 / 74

Recap

▶ Algebraic structure reduces sizes and improves efficiency

▶ Can still define average-case problems

▶ Most worst-case to average-case reductions still apply

▶ Ideal lattices = rank 1 modules can be vulnerable

▶ NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2
(seems safe so far, but arguably their weakest point)



73 / 74

Recap

▶ Algebraic structure reduces sizes and improves efficiency

▶ Can still define average-case problems

▶ Most worst-case to average-case reductions still apply

▶ Ideal lattices = rank 1 modules can be vulnerable

▶ NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2
(seems safe so far, but arguably their weakest point)



74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices
▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator


74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices
▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator


74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices

▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator


74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices
▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator


74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices
▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator


74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices
▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator


74 / 74

Conclusion on lattice-based crypto

Advantages:
▶ many reductions (worst-case to average-case, search to decision,

. . . )
▶ some parameters might still be broken
▶ but gives confidence that there are no major flaws in the problems

▶ complexity of the best algorithms is quite well understood
▶ LWE estimator: https://github.com/malb/lattice-estimator

▶ quite efficient if using structured lattices
▶ can be used in many constructions

Drawbacks:
▶ big keysizes and ciphertexts/signatures vs classical cryptography

▶ structured lattice problems are still young
▶ more cryptanalysis is needed

Thank you

https://github.com/malb/lattice-estimator

	LWE
	Algebraic lattices
	Algebraic lattices
	Algebraic lattices
	Algebraic lattices

