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From codes to lattices

Similarities:
» Both are discrete additive groups

» Same problems: finding short or close lattice/code points

Differences:
» Hamming distance in Fg — Euclidean distance in R" (pictures!)

» Code with decoding algorithm — Any lattice and a short basis
(decoding for free!)

most important:

row vectors (xG) — column vectors (Gx)
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A lattice £L C R" is a discrete subgroup of R".

Discrete
For every v € L there exists an open ball around v
that contains no other elements from L.

Example Z C R:
A i

-4 -3 -2-10 1 2

Q)

(
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First minimum of a lattice
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By the additivity the neighborhood of

every lattice point looks the same.
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First minimum of a lattice

By the additivity the neighborhood of

every lattice point looks the same.
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First minimum of a lattice

The first minimum A1(L) of a lattice L is
the length of the shortest nonzero lattice vector:

M(£) = min {llx]]} > 0.
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Volume of a lattice

A

The volume vol(L£) of a lattice L is the (co-)volume of any
fundamental area w.r.t. translation of the lattice:

vol(£) = vol(R"/L)
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Volume of a lattice

The volume vol(L£) of a lattice L is the (co-)volume of any
fundamental area w.r.t. translation of the lattice:

vol(£) = vol(Spany(L)/L),
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Minkowski’s Theorem

Minkowski’s Theorem
For a full-rank lattice £ C R"” we have

vol (3M(£) - B") < vol(£)
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Minkowski’s Theorem

Minkowski’s Theorem
For a full-rank lattice £ C R"” we have

vol(L)l/n Y 1/n
Al(l:) S 2W ~2- n/27Te . VOI(;C)
N— ——

Mk(L)
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Basis Representation

Lattice basis

R-1linearly independent bi,...,b,
L(B) :={>;jxibj : x € Z"} C R".
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Basis Representation

Lattice basis

R-linearly independent by,...,b,

° ° ° ° ° ° L(B) :={X>ixibi : x € Z"} C R".

° Fundamental Parallelepiped
P(B)=B-[0,1)"

¢ ¢ o vol(£) = vol(P(B)) = | det(B)|
[ ] ®
Infinitely many distinct bases
e o o o o o B'"=B-U for Ue€gL,(z).

8 / 74



Basis Representation

Lattice basis
/ R-linearly independent by,...,b,
L(B) :={>ixibi: x € Z"} C R".

Fundamental Parallelepiped

P(B) = B-[0,1)"
vol(L) = vol(P(B)) = | det(B)|
/ Inflnltely many distinct bases

=B-U for Uec GL,(Z).
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Hard Problems
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Shortest Vector Problem (SVP)
Find a shortest nonzero vector
v € L of length A{(L).
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Shortest Vector Problem (SVP) Closest Vector Problem (CVP)
Find a shortest nonzero vector Given a target t € R"”, find
v € L of length A1(L). a closest vector v € L to t.
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Shortest Vector Problem (SVP) Closest Vector Problem (CVP)
Find a shortest nonzero vector Given a target t € R"”, find
v € L of length A1(L). a closest vector v € L to t.

Supposedly hard to solve when n is large
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How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2°+o(n)

classical: ¢ = 0.292, or quantum: c¢ = 0.265)

= not polynomial
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How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2°+o(n)

classical: ¢ =~ 0.292, or quantum: c¢ = 0.265)

= not polynomial

In practice:
» n=2 ~ easy, very efficient in practice

» up to n=060 or n =80 ~~ a few minutes on a personal laptop

» up to n=180 ~~» few weeks on a big computer with good code

» from n =400 to n=1000 ~~ cryptography
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Approximate versions

e e o e o _9e_-0 0 o o o o o0 o o o o o o o
vl < a-Ai(L),- oV . Mt — vl < - dist(L, £)
e e o o o o /o o o v e e e’ e ¢ o o e o o o
: r///f\ ) t \
1 \
® ° ° ° ° ° ° ° ° ¢ ° ° “o‘/o‘ ° /'° ° ° ° ° ° [
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a-approx-SVP «—-approx-CVP
Find a short nonzero vector Given a target t € R"”, find
v € L of length < a-A1(L). a close vector v € £ to t.
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a-approx-SVP «—-approx-CVP
Find a short nonzero vector Given a target t € R"”, find
v € L of length < a-A1(L). a close vector v € £ to t.

Supposedly hard to solve when n is large
and the approximation factor o is small
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Promise versions

Ai(L) < 8- Mk(£) §<3 .
° ® ® ® ° ° dist(L,t) < 6 - (L)
[ [ [ ] . ([ ] ([ ] [ [ [ [ [ ] [ ] ([ ]
e o o .-® o . ot
[ ] [ [ (] . \
e o o o 03"" o ) o o ! d).; e o o o
D [ ] [ ] [ ] L’ [ Nl
[ [ [ . - . [ ]
[ [ [ ] (] [ ] [ [ [ [ [ [ ] (] [
d-uSVP Bounded Distance Decoding (§-BDD)
Find unusually short CVP with a target unusually
vector v € L. close to the lattice.
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d-uSVP Bounded Distance Decoding (§-BDD)
Find unusually short CVP with a target unusually
vector v € L. close to the lattice.

Supposedly hard to solve when n is large
and the promise gap 1/ is small
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Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):
BKZ algorithm

Timeg
20(n)
approxSVP/approxCVP
(n05) BKZ trade-offs
20 ()| EEE e sEa = \
poly 3 .
poly 20(n"*) 20(n)  Approximation

factor o
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We have seen:
» Lattices are discrete subgroups of R”

» Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following
problems are supposedly hard:

» SVP, approxSVP, uSVP
» CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more
solutions, ...)

EHOW to build cryptography from this?]
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Lattice-based cryptography



Good vs bad basis

Good basis (Secret key) Bad basis (Public key)

° ° ° ° ° ° ° ° ° ° e b

[ ] [ ] [ ] [ ] o ([ J (]

Hard
[ ] [ ] [ ] o ( ] o o
/[
[ ] [ ] o o ( ]
0 by

)

Short and close to orthogonal }
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Good vs bad basis

Good basis (Secret key) Bad basis (Public key)

° ° ° ° ° ° ° ° ° ° e b

[ ] [ ] [ ] [ ] o ([ J (]

Hard
[ ] [ ] [ ] o ( ] o o (]
/[
[ ] [ ] o o ( ]
0 by 0

L Short and close to orthogonal }

Keygen: Generate a random lattice along with a good basis
(NTRU, LWE, SIS, ...)
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Solving CVP with a short basis

) ) ) ) ° ° Input: t=—1.4.-b1+2.2-bp
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Solving CVP with a short basis

) ) ) ) ° ° Input: t=—1.4.-b1+2.2-bp
L round coordinates
° o % ° ° l
OQutput: v=—1-by +2- b
) ) ) Z. ) ®
° ° °
0 by
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Solving CVP with a short basis

o/o/o/o/o/o Input: t=—1.4.-b1+2.2-bp
1 lround coordinates
[ J [ J [ J ([ J
/ / /‘\‘/ / / Output: v=—1-b1+2-bp
’/'/’/2//'/’ e=t—v=—.4-b+02-b
e . 5.5
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Solving CVP with a short basis

/ /
l_~ /././. Input: t=—1.4.by+2.2-bp
Cd ~ )
\ lround coordinates
\ 1 /././
\0 Qutput: v=—1:-b1 +2:b
~—/
Y-V A 11
o /e /70 /o /o e€B-|—3:3
/o)) )/ =>4

[ BDD: inner-radius approxCVP: outer-radius }
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Solving CVP with a short basis

Input: t=—1.4.by+2.2-bp

lround coordinates

Qutput: v=—1:-b1 +2:b

e=t—v=—4-b1+0.2-.b
n
o [-53)

The better the basis,
the closer the solution

[ BDD: inner-radius approxCVP: outer-radius }
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Encryption via BDD

° ® ® ® ® KeyGen:
sk = good basis of L.
= e pk = bad basis of L.
[ J [ J
[ J [ J
[ J [ J
[ J [ J
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Encryption via BDD

° ® ® ® ® KeyGen:
sk = good basis of L.
= e pk = bad basis of L.
[ ] .
Encrypt(m, pk) :
Input: encode message m € L using pk.
° Output: noisy message c = m + e.
[ ] [
([
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DDDDDES

c sk = good basis of L.
././‘\#«,/flz./. pk = bad basis of L.
/././()%t/./ Encrypt(m, pk) :

Input: encode message m € L using pk.

° Output: noisy message c = m + e.
° ° e | Decrypt(c,sk):
Input: ¢ = m+ e.
([ ]

Output: recover m using sk.
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Encryption via BDD
/./././././ KeyGen:
sk = good basis of L.
c
././‘\#«,/flz./. pk = bad basis of L.
/././()%t/./ Encrypt(m, pk) :
Input: encode message m € L using pk.
% ()

‘ Output: noisy message c = m+ e.

()
/ Decrypt(c, sk):
4!
() /244

Input: ¢ = m+ e.

Output: recover m using sk.

[Assumption: Hard to solve BDD in £ with bad basis. }
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Hash-and-sign signature scheme via approxCVP

° ® ° ° ° KeyGen:

sk = good basis of L.

° ) ° fb2 o L pk = bad basis of L.
[ ) [ ) ®
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sk = good basis of L.
pk = bad basis of L.

Sign(m, sk) :
Hash m to a target t = H(m) € R".
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Hash-and-sign signature scheme via approxCVP

/ / / / / / :(eyzGZZ(:)d basis of L.
/ ‘7/ //l/ / pk = bad basis of L.
/ / / %/ / Sign(m, sk) :

Hash m to a target t = H(m) € R".

Output: s € L close to t using sk.

Verify(s, pk):
Check that s € L using pk.

Check that s is close to H(m).
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Hash-and-sign signature scheme via approxCVP

/ / / / / / :(eiGZZ;d basis of L.
/ ‘7/ //l/ / pk = bad basis of L.
/ / / %/ / Sign(m, sk) :
/ Hash m to a target t = H(m) € R".
//” (Y%

)
|
e /@

H Output: s € L close to t using sk.

()
/ Verify(s, pk):
()

Check that s € L using pk.
() / B

Check that s is close to H(m).

[Assumption: Hard to solve approxCVP in £ with bad basis. }
18 / 74




Learning attack on the signature scheme

/ / / / / / Parallelepiped attack:
| » ask for a signature s on m
/ , » plot H(m) —s
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Learning attack on the signature scheme
/./././././ Parallelepiped attack:
o/ o o/ o/ o

» ask for a signature s on m

» plot H(m) —s

» Trepeat

From the shape of the

/././.
llelepiped,
/0/././././ paralleleplpe one can
recover the short basis
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Preventing the attack

{Idea: solve approxCVP randomly}
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Preventing the attack

¢ i {Idea: solve approxCVP randomly}
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Preventing the attack

o ¢ i {Idea: solve approxCVP randomly}

®
Sign(m, sk) :

° Hash m to a target t = H(m) € R".
OQutput: (discrete Gaussian) sample

§ € L close to t using sk.

]
Signature does not depend

PY PY P on secret basis

[FALCDN = the above + NTRU lattices. }

20 / 74



Recap and advanced constructions

We have seen:

» BDD is hard (in a family of random lattices) => encryption
scheme.

21 / 74



Recap and advanced constructions

We have seen:

» BDD is hard (in a family of random lattices) => encryption
scheme.

» approxCVP is hard (...) = signature scheme.

21 / 74



Recap and advanced constructions

We have seen:

» BDD is hard (in a family of random lattices) => encryption
scheme.

» approxCVP is hard (...) = signature scheme.

EMore on these families of lattices in part II!J

21 / 74



Recap and advanced constructions

We have seen:

» BDD is hard (in a family of random lattices) => encryption

scheme.
» approxCVP is hard (...) = signature scheme.

EMore on these families of lattices in part II!J

One can construct many advanced primitives from lattices:

» (fully) homomorphic encryption

» 1identity based encryption
functional encryption for linear functions

21 / 74



Recap and advanced constructions

We have seen:
» BDD is hard (in a family of random lattices) => encryption

scheme.
» approxCVP is hard (...) => signature scheme.

EMore on these families of lattices in part II!J

One can construct many advanced primitives from lattices:

» (fully) homomorphic encryption

» 1identity based encryption
functional encryption for linear functions

21 / 74



Cryptanalysis - Algorithms to solve (approx)SVP



Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Timenp

20(n)

raphy

0.5)

20(n

g

Crypto

poly : s
poly 20(n®?) 20(n)  Approximation
factor «
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Algorithms to solve (approx)SVP
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Heuristically solving SVP with lattice sieving



Heuristics in lattice-based cryptanalysis

Heuristic assumptions allow to..
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Gaussian Heuristic

For a ‘nice’ volume S C R":

SN L| =~ “l'g:((z)) = vol(S) - density(L)
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High dimensional volumes can behave unintuitively

I([ . 1] ) ) I(B ) 7.l_n/2 (27Te)n/2+o(n) 0
vol([-1,1]") = 2", wvol(B") = n = —
n=2 n=4 n=10
78.5% 31% 0.25%

En—dimensional balls with a fixed radius ‘disappear’ for large n.]
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Intermezzo on high dimensional geometry (2)

Scaling by R changes volume by factor R".
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SVP via Lattice Sieving

1. Sample a list L C £ of (long) lattice vectors.
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SVP via Lattice Sieving

1. Sample a list L C £ of (long) lattice vectors.
2. Repeat:

Find close vectors vi,vy € L. Replace vy <— v — vs.
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Heuristic complexity analysis
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N vectors of length < ~.
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N vectors of length < ~.

Heuristic assumption

vectors in list L have uniform directions.

Probability |lvi — v2|| < 0.999 -~ equals

relative volume spherical cap = (3/4 + €)"/2+o(n)

N? pairs, new list size N, so need N?.(3/4)"/2 > N.

Can be

improved ‘
Space: N - poly(n) = (4/3)n/2+o(n) — 20.2075+0(n) 20.292,,+0(n)l ©

Time: N?. poly(n) = (4/3)"t°(n) = 20-415n+o(n)
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Solving approxSVP/CVP via basis reduction



Gram-Schmidt Orthogonalisation

Gso: bf := 7T(b1,...,b,-_1)J-(bi)

[ ] [ ] [ ] [ ] [ ]
Ky

[ ] [ ] [} [ ] [ ] [ ]
[ ) [ ) o o [}

[ ) [ ) [ ) [ J [}

b;‘:/bz

° ° I---ao °

0 b} = by

[ ) [ ) [ ) o [} [}
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Gram-Schmidt Orthogonalisation

. * B — .
N N 680: b := T(p,,....b_)- (bi)
—
Ky
° ° ° ° ° ° ) .
Fundamental Area: Fp+:= [] [—jb}",fb;")
i=1
L L] [ ] [ ] )
L] [ ’*% ° ° °
2
o | o [ e d-n |
0 bj =b
[ ° ° ° ° °
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Gram-Schmidt Orthogonalisation

. ol .
. . . . . GS0: bi = Tr(bla---abi—l)J'(b’)
N—— —
Ky
[ ] ° L] (] [ ] [ ] 1 1
Fundamental Area: Fp+:= [] [—jb;f‘,fb;")
i=1
° o N ([ ] [ ]
Nearest plane algorithm
[ ] [ ] e A o [ ] [
B Input: target t=e
° ° 0'5-.-;. . For j=mn,...,1:
b] = b (e,b})
e+ e— {(b;*,bfﬂ b;.
[ ] [ ] [ ] [ ] [ ] [ ]
Output: e € Fp-
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Good vs Bad basis

b} 1= m(p,,...b,_1)+ (i)
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Good vs Bad basis

vol(£) = vol(Fp-) = _[kll LAl
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Good vs Bad basis

vol(£) = vol(F5:) = _[kll LAl

b} 1= m(p,,...b,_1)+ (i)

T

° o | o ° ° °
2 |
° ;-- -9 ) )
0 _bj =by
[ ] [ ] [ ] [ ] [ ] [ ]

b
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Good vs Bad basis

b} 1= m(p,,...b,_1)+ (i)

k
vol(£) = vol(F&-) = IT |67 |

[ S —
e
[ ] [ ] [} [ ] [ ]

o L o ° ° °
>
o ;-- -9 ° )
0 b =b
° ° ° ° °

BDD: ||e|| < 3 min; ||b}

’ [ Good Basis:
* ~ ~
approxCVP: |le||® < %Z’. Hbl*Hz |b}|| = ...~ |b

ZH] 30 / 74




Basis Profile

log || b} ||

Go
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Basis Profile

Basis profile
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orthogonality of a basis

log || b7 |

Goo
dpﬂm- . .
1le Basis reduction

Input: Bad basis

Area = log vol(£) Output: good basis
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Basis Profile

Basis profile

Measures the length and
orthogonality of a basis

log || b7 |

Goo
dpﬂm- . .
1le Basis reduction

Input: Bad basis

Area = log vol(£) Output: good basis

1 n of '_Lle‘
. tten the PT
index 1 Fla
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Example: NTRU public vs secret basis

Lpublic and secret bases generated from the NTRU problem}

Public basis

q i
.
=
o0 Secret basis
g val T TS esls
01 n
index i
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Lagrange Reduction (n=2)

Wristwatch Lemma

For any lattice £ of rank 2
there exists a basis (b1, b)) s.t.

(b1, b2)| < 3 ||ba]|

4
{Hbi‘H < \/§'||b3‘||}
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LLL Reduction

Definition
A basis B of L is LLL-reduced if
(wi(bi), wi(bi+1)) is Lagrange Reduced
for all i < n.
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LLL Reduction

Definition
A basis B of L is LLL-reduced if
(wi(bi), wi(bi+1)) is Lagrange Reduced
for all i < n.

U
Vi <n, |b}| < V73 - b
\

n—1
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LLL Reduction

Definition Algorithm
A basis B of L is LLL-reduced if While 3i s.t. (mi(b;),mi(bi+1))
(wi(bi), wi(bi+1)) is Lagrange Reduced is not Lagrange Reduced,
for all i < n. Langrange Reduce it.

U
vi <, b] < Va73-|
U

n—1
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Q
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LLL Reduction

Definition Algorithm
A basis B of L is LLL-reduced if While 3i s.t. (mi(b;),mi(bi+1))
(wi(bi), wi(bi+1)) is Lagrange Reduced is not Lagrange Reduced,
for all i < n. Langrange Reduce it.

4

Vi < n, b} < 373 |bl|
Requires a slight relaxation.
U (e-Lagrange Reduced)

Termination in poly-time:

n—1
Ib1ll < V4732 - vol(L)Y/"
Proof argument:

Decy P=73%(n+1-i)-log|b}|
" eaSes i<n
log || b} || Slowly Decreases by € at each step
and is lower-bounded.

index i 34 / 74




BKZ algorithm

» Define the projected sublattice basis By, := (m/(by),...,m(b,—1)).
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BKZ algorithm

» Define the projected sublattice basis By, := (mi(bi),...,m(br—1)).
» For k =1,...,n solve SVP in L(B..min{n+1,x+3}) and replace b.
» Reduction better for larger blocksize 3, but cost 20-2926+o(n)
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BKZ algorithm

Define the projected sublattice basis By, := (mi(bi),...,m(br—1)).
For k =1,...,n solve SVP in L(By.min{n+1,x+3}) and replace b,.
Reduction better for larger blocksize 3, but cost 20-2928+o(n)
Behaviour well understood for ‘random’ lattices. [GSA]

. — LLL
\/\ LLL GSAS$
Sxese \ —— 40-BKZ
--—- 40-BKZ GSA

vYvy Vvyly

log I16;" Il

0 20 40 60 80 100
index i
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We have seen:

» SVP can be solved in time 20-2927+0(n) yia Jattice sieving
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LLL algorithm:
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BKZ algorithm:
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We have seen:
» SVP can be solved in time 20-2927+0(n) yia Jattice sieving

» Lattice reduction: flattening the basis profile

LLL algorithm:
P

SVP for rank 2 1

J b1l < N/E7T7£%1- vol(L)1/n

-

BKZ algorithm:

Vs

SVP for rank B‘W n—1
J Iball < O(8) 7 - vol(£)"

-

=

» Same algorithms also solve promise variants uSVP and BDD
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» Basics of lattice theory and hard problems
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Conclusion

We have seen:

» Basics of lattice theory and hard problems

» How these hard problems can be used for cryptography
» The best (known) algorithms to solve these problems

What’s next?
» Keygen: what families of lattices to use?
» Why do we trust these lattices?

» More efficiency: algebraic lattices

37 / 74



Part II




s N ( N
Part I Part II
Lattice theory Lattices used in cryptography
» Lattices » SIS, LWE, decLWE
» Hard problems » Security proofs
Cryptography Hardness Reductions
» Trapdoor bases » search to decision
» Encryption, Signature » WC to AC reductions
Cryptanalysis Algebraic Lattices
» Lattice Sieving » Ideal and module lattices
» Basis Reduction » NTRU, RLWE, mod-LWE

= / N\ J
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Limitations of SVP (and CVP)

LSVP and CVP are hard in the worst case}
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Limitations of SVP (and CVP)

LSVP and CVP are hard in the worst case}

» no efficient algorithm that works for any lattice

» but for some lattice it might be easier

{For crypto, we need problems that are hard on average}
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g-ary lattices

Notations: gq,n,m integers, 1< n<Km, Zq:=17/qZ
» A lattice £L C R™ of dimension m is called g-ary if

qz™ C L C Z™.
» Let A€ ZZ’X", then we define the row-generated g-ary lattice
Ng(A) :={y € Z" : y = Ax mod q for some x € Z,} = AZ" + qZ"
» and the parity-check g-ary lattice
Nj(A):={xe€Z™:x"A=0mod q} = ker(A" : Z™ — Z7)
» Exercise: if q prime and A has full column-rank, then

vol(Ag(A)) = ™", vol(A;(A)) = q"
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Suppose g =5,n=1,m=2,

-

Ny(A) = AZ" + qZ™ = (;) - 7 + 57?2

Parity-check representation:

M (@) =7 (7))

= {(x,y) €Z?: —2x+y = 0 mod q}
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Family of random g-ary lattices

» Random g-ary lattice: sample A€U (ZZ’X"), and consider Ag4(A)
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The SIS problem

Notations: gq,B integers, 1< B <K q, Zq:=171/qZ
SIS ( Short Integer Solution) [Ajt96]

Parameters: B and q

Problem: Given | A (—U(ZZ’X")

Find x € Z™ s.t. A =0mod q with ||x|| < B and x # 0.
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The SIS problem

Notations: gq,B integers, 1< B <K q, Zq:=171/qZ
ISIS (Inhomogeneous Short Integer Solution) [Ajt96]

Parameters: B and q

Problem: Given A — UEZG™™ , y <+ UZY

Find x € Z™ s.t. A =y7 modgq with ||x|| < B .

Solving approx—-CVP Solving ISIS Solving approx-SVP
in any lattice > with non-negligible 2> in any lattice
lattice of rank m probability of rank n
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(I)SIS is as hard as worst-case lattice problems

Theorem [Ajt96]

For any m = poly(n) and B > 0 and sufficiently large q > B poly(n),
it holds that solving SIS is at least as hard as solving <-SIVP on
arbitrary n-dimensional lattice, for some approximation factor

v = B - poly(n).
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(I)SIS is as hard as worst-case lattice problems

Theorem [Ajt96] |

For any m = poly(n) and B > 0 and sufficiently large q > B poly(n),
it holds that solving SIS is at least as hard as solving <-SIVP on
arbitrary n-dimensional lattice, for some approximation factor

v = B - poly(n).

» the poly quantities have been improved in more recent works
» for typical parameters: SIS = ISIS

» see [Peil6] for a survey
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SIS is a lattice problem

SIS (Short Integer Solution) |
Given A <« UZF*"

Find x € Z™ with ||x|| < B and x #0 s.t. A =0 modg.
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SIS is a lattice problem

SIS (Short Integer Solution) |
Given A <« UZF*"

Find x € Z™ with ||x|| < B and x #0 s.t. A =0 modg.

¢ ¢ ¢
° ° ° 1 m) . T
y y y I\q(A)_{XEZ |x"A=0mod g}
o o o
o ° @
° ° °
° 0. ¢ °
o o o
o o o
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SIS is a lattice problem

SIS (Short Integer Solution) |

Given A <—U(Z?X")

Find x € Z™ with ||x|| < B and x #0 s.t. A = modg.
® ® ®
[ [ [ L _ m| Ta__
y y y N, (A) ={xe€Z"|x A=0mod q}
® ® ®
® ® ® ~ _ : 1
y y [SIS ~ approx-SVP in random Aj (A)}
¢ B 0. ¢ [
¢ ¢ P Average-case approx-SVP problem
® [ ] ®
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SIS is a lattice problem

SIS (Short Integer Solution)

Given A« UZF*"), y <« UZY

Find x € Z™ with ||x|]| < B s.t. A = [y7| modg.
® ® ®
[ [ [ L _ m| Ta__
y y, y N, (A) ={xe€Z"|x A=0mod q}
® ® ®
® ®—F0 0 ~ _ : L
y 8 y [ISIS ~ approx-CVP in random Aj (A)}
[ 0. ¢ [
¢ ¢ P Average-case approx-CVP problem
® ® ®
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Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice /\f]‘(A) together with
a short basis of it.
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Lemma [Ajt99]

One can efficiently create a uniform SIS lattice A#(A) together with
a short basis of it.

{Idea: start with a short basis, then perturb and randomize it}
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Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice /\f]‘(A) together with
a short basis of it.

{Idea: start with a short basis, then perturb and randomize it}

{ pk = uniform random A }

> SIS problem

é____

[sk = good basis S of /\;‘(A)}
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Hash-and-sign signature scheme from SIS

Sign: hash message to t € Z",

[ [ sample nearby s € l\é-(A) with sk
° [
° P Verify: s € I\é‘(A) At—s|| <B
[ o
[ ] [ ]
[
o o
[ ] [ ]
[ o [
o o
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Hash-and-sign signature scheme from SIS

Sign: hash message to t € Z",
[ [ sample nearby s € l\é-(A) with sk

° ° Verify: s € I\é‘(A) At—s|| <B

Security proof

key-recovery > SIS problem

P ° signature forgery > ISIS problem

Signature scheme based on hard
average—-case lattice problem

a7 / 74



The LWE problem

LWE (Learning With Errors) [RegO5] |

Sample A < U(ZTX"), ° « U(Z) and H(— u{-s,---,B}m)

Given A and H, where H:: A s+ Hmodq

Recover s or e
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The LWE problem

LWE (Learning With Errors) [RegO5] |
Sample A < U(ZTX"), ° « U(Z) and H(— u{-s,---,B}m)

Given A and H, where H:: A s+ Hmodq

Recover s or e

Remark. Sometimes ° is small in Zq (not uniform)
» this is (almost) equivalent
» prove it (hint: you are allowed to change m)
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The LWE problem

LWE (Learning With Errors) [RegO5] |

Sample A <« U(ZM*"), <+ U(ZI) and H(— u({-s8,---,B}m)

Given A  and H, where H:: A S+ Hmodq

Recover s or e

Solving LWE Solving approx—-SVP
with non-negligible pe in any lattice
probability of rank n
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The LWE problem

LWE (Learning With Errors) [RegO5] |

Sample A <« U(ZM*"), <+ U(ZI) and H(— u({-s8,---,B}m)

Given A  and H, where H:: A S+ Hmodq

Recover s or e

Solving BDD Solving LWE Solving approx—-SVP
in any lattice =2 with non-negligible pe in any lattice
of rank m probability of rank n
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LWE is quantumly as hard as worst-case lattice problems

Theorem [RegO5]

|
For any m = poly(n), modulus g < 2P°M(") and B > 2./n, solving LWE is

at least as hard as quantumly solving <-SIVP on arbitrary
n-dimensional lattice, for some approximation factor v = O(n-q/B).

discrete
Gaussian distribution
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LWE is quantumly as hard as worst-case lattice problems

Theorem [RegO5] |
For any m = poly(n), modulus g < 2P°M(") and B > 2./n, solving LWE is
at least as hard as quantumly solving <-SIVP on arbitrary

n-dimensional lattice, for some approximation factor v = O(n-q/B).

@ discrete

Gaussian distribution

Remark: the reduction can be made fully classical

49 / 74



LWE is a lattice problem

LWE instance ( A H =1A|F + H mod q), e small
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LWE is a lattice problem

LWE instance ( A H =1A|F + H mod q), e small

BDD
target b=v 4+ e
lattice Ag4(A)
(] ([ [ ]
o o
o o ( J5) [ ]
o o ([
° As mod G
(] ([ [ ]
[ ] 0 (]
o ([ J [ J

50 / 74



LWE is a lattice problem

LWE instance ( A H =1A|F + H mod q), e small

WSVP
BDD ) A b
target b=v + e lattice Aq ((0,, 1))
lattice Aq(A) contains short e’ := (et, 1)t
([ J ([ [ J ([ [ [ J
[ J [ J ([ [ J [ J
[ [ ®b ([ [ J o
([ J [ [ ([ J ([
e Asmod gy ° = °
° o ° o o/’ °
[ ] 0 (] ([ [ ] 0 [ ]
([ [ [ J [ J



Decision variant of LWE (1)

decision-LWE (1)

Sample A <« U(ZM*"), < U(ZI) and H(— u{-s8,---,B}m)

Given A  and H, where H:: Al °+ Hmodq or |b|« UZH

Guess whether is uniform or not.
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Decision variant of LWE (1)

decision-LWE (1)

Sample A <« U(ZM*"), < U(ZI) and H(— u{-s8,---,B}m)

Given A  and H, where H:: Al °+ Hmodq or |b|« UZH

Guess whether is uniform or not.

[decision LWE <——=> (search) LWE}

= decision problems can be easier to use for crypto
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Decision variant of LWE (2)
if dec-LWE is hard: (A ,H: A ° +Hmodq>z<A A b)
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Decision variant of LWE (2)
if dec-LWE is hard: (A ,H: A ° +Hmodq>z<A A b)

For a random g-ary lattice:

BDD:

BDD target b =~ uniform random target
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Decision variant of LWE (2)
if dec-LWE is hard: (A ,H: A ° +Hmodq>z<A A b)

For a random g-ary lattice:
BDD: ,
BDD target b =~ uniform random target
S J
( N
random g-ary lattice with planted short vector
uSVP: =
random g-ary lattice

S J
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Decision variant of LWE (2)
if dec-LWE is hard: (A,H= A S+Hmodq>z<A,b>

For a random g-ary lattice:
BDD: ,
BDD target b =~ uniform random target
S J
( N
random g-ary lattice with planted short vector
uSVP: =
random g-ary lattice

S J

useful in security proofs!
52 / 74



1 bit encryption scheme from LWE

/\qL(P) KeyGen:
[ ] o A b
° ° ° pk=(A,b=As+e),P=(0 1).
[ ] o e
y d sk = e, short vector (1) € Ny(P).
o o
o o
o o o
o o
o o
o o
o o
o o o
o o

53 / 74



1 bit encryption scheme from LWE

AqL(P) KeyGen:
o ® A b
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® ] e
o o sk = e, short vector (1) € Ny(P).
[ o Encrypt(m, pk) :
. b Generate: BDD instance t = v + €’ in I\‘JI-(P)
([ ([ o
Y Y Output: c=t+{g—‘-m-(0,...,0,l)—r.
([ o
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[ o Encrypt(m, pk) :
([ o . : — ’ s 1
o .? o Generate: BDD instance t =v + €’ in A, (P)
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o [ J
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AqL(P) KeyGen:
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° ° ° pk=(A,b=As+e),P=(0 1).
® o e
o o sk = e, short vector (1) € Ny(P).
[ o Encrypt(m, pk) :
o =0 b Generate: BDD instance t = v + €’ in A1 (P)
° o o I
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1 bit encryption scheme from LWE

/\qL(P) KeyGen:
[ J [ J A b
°® P ° pk=(A,b=As+e),P=(0 1).
[ [ J e
o o sk = e, short vector (1) € Ny(P).
[ o Encrypt(m, pk) :
o =1 b Generate: BDD instance t = v + €’ in A1 (P)
° e ° d
Y Y Output: c=t+{g—‘-m-(0,...,0,l)—r.
o [ J
o o
o ([ J
o o ([ J
o ([ J
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1 bit encryption scheme from LWE

AqL(P) KeyGen:
o o A b
° ° ° pk=(A,b=As+e),P=(0 1).
o [ J e
sk = e, short vector € N,(P).
o o (1) «(P)
[ 8 [ Encrypt(m, pk) :
m =
o o Generate: BDD instance t = v + €’ in I\‘JI-(P)
o o 2
o Y Output: c=t+{g—‘-m-(0,...,0,l)—r.
o b Decrypt(c, sk):
([ [
e
o Y Compute: x = <c, <1>> mod q.
[ [ [ q q
g g Output: m'={0 i —gsxsg .
1 , else
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1 bit encryption scheme from LWE

AqL(P) KeyGen:
o o A b
° ° ° pk=(A,b=As+e),P=(0 1).
o o e
sk = e, short vector € N,(P).
o o (1) «(P)
[ . [ Encrypt(m, pk) :
m =
o o Generate: BDD instance t = v + €’ in I\‘JI-(P)
[ [ g [
o Y Output: c=t+{g—‘-m-(0,...,0,l)—r.
o b Decrypt(c, sk):
([ [
e
o Y Compute: x = <c, <1>> mod q.
[ [ [ q q
L g Output: m'={0 i —gsxsg .
1 , else
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1 bit encryption scheme from LWE

KeyGen:
A b
_ . pk=(A,b=As+e),P=(0 1).
security proof e
sk = e, short vector (1) € Ny(P).
dec-LWE =

I\qL(P) ~ random g-lattice Encrypt(m, pk) :
Generate: BDD instance t = v + €’ in I\‘JI-(P)

dec-LWE = Output: c=t+ {%—‘ -m-(0,...,0,1)7.
~ uniform random target Decrypt(c, sk):
¢ = uniform random target e
Compute: x = <c, <1>> mod q.
- J
] q q
2 s if — 4 S X S 4

0 : = .
utput: m { NI
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Summary on SIS and LWE

SIS and LWE are average-case problems
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Summary on SIS and LWE

SIS and LWE are average-case problems
= Good for crypto

family of random g-ary lattices
(I)SIS <—» average-case SVP/CVP

LWE +— average case BDD/uSVP
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LWE vs SIS

Time
20(n)
LWE (I)s1s
SN
o (g
& &
20(n%) & Sl - ‘
I Q|9 I
I 2L I
| ol B |
I i
: 38 :
poly ; ;
2—9(n) 2-2(n"*%) poly 20(n"%) 20(n) Approximation
factor a

Promise factor &
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decision-LWE <——=> (search) LWE <——— SIS
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LWE vs SIS

Time
20(n)
LWE (I)s1s
SN
o (g
& &
20(n%) & e - ‘
I Q|9 I
I 2L I
| ol B
I > > I
I i) I
poly : :
2—9(n) 2-2(n"*%) poly 20(n"%) 20(n) Approximation
factor o

Promise factor &

decision-LWE <——=> (search) LWE <—— SIS

Exercise
Prove that decision-LWE < SIS

Hint: See decryption of LWE encryption scheme
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(decision) LWE / SIS:

» lattice problems over random g-ary lattices
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(decision) LWE / SIS:
» lattice problems over random g-ary lattices

» all somewhat equivalent

» as hard as worst-case lattice problems

» no major flaw in the design
» Dbut cryptographic constructions choose smaller parameters than the
ones needed for the reductions

» best known algorithm has time R

» Dby transforming LWE and (I)SIS into SVP/CVP instances

» useful survey [Peil6]

56 / 74



Algebraic lattices



» A lattice of dimension n is described by some basis B &€ R"*"
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» A lattice of dimension n is described by some basis B &€ R"*"
= n? coefficients,

» Storage: multiple MB or GB of data

» Efficiency: matrix-matrix product O(n3), matrix-vector O(n?)

{Idea: add (algebraic) structure}

57 / 74



Number fields

Number field: K = Q[X]/P(X)
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Number fields

Number field: K = Q[X]/P(X)

Ring of integers: Ok C K, for this talk Ok = Z[X]/P(X)
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Embeddings

Coefficient embedding: X : K — R4
Z, =0 lel — (.YO7°" ayd—l)

Canonical embedding: o: K — c
y(X) = (y(a1),--- s y(aa))
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Embeddings

Coefficient embedding: X : K — R4
d—1 i
Y=o YiX' = (¥0,- ,ya-1)
Canonical embedding: o: K — c
y(X) = (y(a1),--- s y(aa))

» both embeddings induce a (different) geometry on K
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Embeddings

Coefficient embedding: X : K — R4
d—1 i
Yizo YiX' = (yo,--- ,¥a-1)

Canonical embedding: o: K — c
y(X) = (y(a1),--- s y(aa))

» both embeddings induce a (different) geometry on K

Which embedding should we choose?
» coefficient embedding is used for constructions

» canonical embedding is used in cryptanalysis / reductions
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Embeddings

Coefficient embedding: X : K — R4
d—1 i
Yizo YiX' = (yo,--- ,¥a-1)

Canonical embedding: o: K — c
y(X) = (y(a1),--- s y(aa))

» both embeddings induce a (different) geometry on K

Which embedding should we choose?
» coefficient embedding is used for constructions

» canonical embedding is used in cryptanalysis / reductions

» for fields used in crypto, both geometries are = the same
59 / 74



Ideal: I C Ok is an ideal if » x+ye€l for all x,y €/
» a-x€ Il for all a€ Ok and x €/
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Ideal lattices

Ok is a lattice via the coefficient embedding X:
» Ok =1-Z+ X -Z+---+X971.7Z
» Y(OK)=X(1)-Z4---+ XX .Z
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Ok is a lattice via the coefficient embedding X:
» Ok =1-Z+ X -Z+---+X971.7Z
» Y(OK)=X(1)-Z4---+ XX .Z

[ ¥ (Ok) is a lattice of rank d in Z9 with basis (X(X'))o<i<d }

(g) is a lattice:
» (=g - Ok=g-1-Z+g-X-Z+---+g-X9"1.7
» T((g)=X(g) - Z+---+X(g-X91).Z
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Ideal lattices

Ok is a lattice via the coefficient embedding X:
» Ok=1-Z+X-Z+---+X"1.Z
» Y(OK)=X(1)-Z4---+ XX .Z

[ ¥ (Ok) is a lattice of rank d in Z9 with basis (X(X'))o<i<d }

(g) is a lattice:
» (=g - Ok=g-1-Z+g-X-Z+---+g-X9"1.7
» T((g)=X(g) - Z+---+X(g-X91).Z

[Z“g» is a lattice of rank d in Z? with basis (Z(g'xi))0§i<d]
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Ideal lattices (2)

2 (Ok)
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Ideal lattices (2)

XT_.... .Z(OK)
1
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Ideal lattices (2)

Basis of (g): g,g-X,---,g-XI"1
° ° ° °
° ° °
° ° °
XTT' . > (0k)
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Ideal lattices (2)

Basis of (g): g,g-X,---,g-XI"1
° ° . ° Example in K = Q[X]/(X? +1
° ° °
° ° ° 80
XT—. ° ° (0k) 81
1 )
8d-1
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Ideal lattices (2)

Basis of (g): g,g-X,---,g-XI"1
° ° . ° Example in K = Q[X]/(X? +1
° ° °
° ° ° 80 — 8d-1
le D (o)) o
We have gd_1 242
d—1 ) d—2 )
g X = Z gixl+1 — gd—lxd + Z giX,+1
i=0 i=0
d—2

=—gs—1+ » &X' mod X9 +1
i=0
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Ideal lattices (2)

Basis of (g): g,g-X,---,g-XI"1
° ° . ° Example in K = Q[X]/(X? +1
° ° °
° ° ° 80 — 8d-1 — 81
x! D (o)) o e
1 . . .
We have gd_1 242 L 0
d—1 ) d—2 )
g-X=3 gXt=gi1X"+) gx*
i=0 i=0
d—2

=—gs—1+ » &X' mod X9 +1
i=0
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Ideal lattices (2)

Basis of (g): g,g-X,---,g-XI"1
° ° . ° Example in K = Q[X]/(X? +1
° ° °
° ° ° 80 — 8d-1 — 81
x! o o o o X0x) g g0 — &
1 : : .
We have 8d—1 8d—2 006 80
d—1 ) d—-2 )
g-X=> gXtl=gg1 X4 gxit!
i=0 i=0 Storage: n? coefficients — n
d-2
= —gy_1+ Z gixi+1 mod Xd + 1 Time:

O(n?) — O(nlog(n))
i=0
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Module lattices

(Free) module:

[M = {B-x|x € Ok} for some matrix B € OK* with detx(B) # 0}
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Module lattices

(Free) module:

[M = {B-x|x € Ok} for some matrix B € OK* with detx(B) # 0}

» k is the module rank

» B is a module basis of M

Y (M) is a lattice:

» of Z-rank n:=d -k, included in Z"
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Module lattices

(Free) module:

[M = {B-x|x € Ok} for some matrix B € OK* with detx(B) # 0}

» k is the module rank

» B is a module basis of M

Y (M) is a lattice:
» of Z-rank n:=d -k, included in Z"

» with basis (Z(b,'Xj))1<i<k
0<j<d

63 / 74



Modules vs ideals

Ideal = Module of rank 1
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Modules vs ideals

Ideal = Module of rank 1
In K = Q[X]/(X? +1):
dI Mbu Mb12 Mblk
a —a -+« —a
. ] : Mb21 szz ce szk
a al e —a3 dk
M, =
ad dad-1 oo a
Mbkl Mka ce Mbkk
basis of a basis of a free module lattice
principal ideal lattice of rank k
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Algorithmic problems
[ ] [ ]

° ° ° ° ° ° ° ° °
° ° e - e ° e & e ° ° °
™ o,/ @ ° SVP\Q o,/ @ ° SIVP' ° °
I/ e \’7\ A1 \\ I/ \\
° o o o o ' o ' o 5. e ' o °
\ 1 \ S~
° ° ° ° e /e ¢ o Yot e ° °
° e o v e e o e o ° °
~-SVP ~-SIVP

shortest independent

shortest vector problem
vector problem
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Algorithmic problems
[ ] [ ]

° ° ° ° ° ° ° ° °
° ° e - e ° e & e ° ° °
™ o,/ @ ° SVP\Q o,/ @ .SIVPQ ° °
I/ e \’7\ A1 \\ I/ \\
° o o o o ' o ' o 5. e ' o °
\ 1 \ S~
° ° ° ° e /e ¢ o Yot e ° °
° e o v e e o e o ° °
~-SVP ~-SIVP

shortest vector problem shortest independent
vector problem

Notations:
id-X = problem X restricted to ideal lattices

>
mod-X, = problem X restricted to module lattices of rank k
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Hardness of module SVP

Asymptotics:
Time Time Time
---- quantum ---- quantum
2" 2" classical 2" —— classical
b=y 2 kg
a, a, a,
0.5 S 0.5 s 0.5 S
2§ 2|8 2 1%
2 2 2
a a, a,
5 = 5
19 9 H 19
S S H 3 \
poly Approx  poly H Approx  poly * Approx
poly on®s on poly on®S on poly on®s on
SVP and mod-SVP id-SVP [CDW17] id-SVP [PHS19,BR20]
k>2 (with 29" pre-processing)
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Ring and Module-LWE

(search) mod-LWE,

Parameters: ¢ and B
Problem: Sample

> < U((OK/qOK)ka)
» secret s € (Ok/qOk)k

» error e € OF with coefficients in {-B,---,B}
Given and b= A-.-s+ emod q, recover s
S e
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(search) mod-LWE,

Parameters: ¢ and B
Problem: Sample

> < U((OK/qOK)ka)
» secret s € (Ok/qOk)k

» error e € OF with coefficients in {-B,---,B}
Given and b= A-.-s+ emod q, recover s
S e

[ RLWE = mod-LWE; J
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mod-LWE vs mod-SIVP

mod-uSVP;,41 > mod-BDD,, > mod-LWEg > mod-SIVPy
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mod-LWE vs mod-SIVP

mod-uSVP;,41 > mod-BDD,, > mod-LWEg > mod-SIVPy

How large should m be?
» as small as possible
» but so that the closest point to b is As

» m=k is not sufficient

» m=k+1 might be sufficient depending on B and q

68 / 74



NTRU [HPS98]

(search) NTRU

Parameters: q > B >1

Objective: Sample f,g € Ok with coefficients in {—B,---,B}.
Given h=f.g ! mod q, recover (f,g)
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NTRU [HPs98]

(search) NTRU |
Parameters: q > B >1

Objective: Sample f,g € Ok with coefficients in {—B,---,B}.
Given h=f.g ! mod q, recover (f,g)

dec-NTRU

Parameters: gq,B

Objective: distinguish between h as above and /1 uniform in

Ok /(qOk)
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NTRU as a lattice

Recall: h=f-g lmodgqg
Definition (NTRU Lattice)
£"9:= {(a,b) € R2: h-b = amod q}
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NTRU as a lattice

Recall: h=f-g lmodgqg
Definition (NTRU Lattice)
£"9:= {(a,b) € R2: h-b = amod q}

» d =deg(R), rank 2 module, dimension n = 2d, det(L£™9) = q9.
» gh(£h9) ~ /d/me-/q
Short vector(s)

The rotations (x'-f,x'.g) are unusually short vectors in LM9.

bad basis = [ 7 dbasis = (F F
a a81S—01, gOO aSlS—gG
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Two regimes of NTRU

If ||(f,g)|| > poly(log n) - gh(L£"9) £ ||(f, g)ll < gh(L™9)
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Two regimes of NTRU

If ||(f,g)|| > poly(log n) - gh(L£"9) £ ||(f, g)ll < gh(L™9)

» h is not statistically close

» h is statistically close to )
to uniform mod q

uniform mod q

» dec-NTRU is statistically hard > NIRU is a special case of

mod-uSVP»y

uSVP regime = short structured basis

= efficient encryption/signature scheme
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NTRU public vs secret basis

Lpublic and secret bases generated from the NTRU problem}

Public basis

q i
.
=
o0 Secret basis
g val T TS esls
01 n
index i
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» Algebraic structure reduces sizes and improves efficiency
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» Algebraic structure reduces sizes and improves efficiency
» Can still define average-case problems

» Most worst-case to average-case reductions still apply

» Ideal lattices = rank 1 modules can be vulnerable

» NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank > 2
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Conclusion on lattice-based crypto

Advantages:
» many reductions (worst-case to average-case, search to decision,
)
>
>
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Conclusion on lattice-based crypto

Advantages:
» many reductions (worst-case to average-case, search to decision,
)
>
>

» complexity of the best algorithms is quite well understood
>

» quite efficient if using structured lattices

» can be used in many constructions

Drawbacks:

» big keysizes and ciphertexts/signatures vs classical cryptography

» structured lattice problems are still young
>

Thank you
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