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L ti, b2, ...

L, Data C1,C2y ...

Preprocessing CVPP

v

v

® |mproved complexity per target.
® Trade-off between |Data| and CVPP time complexity.
® |deal-SVP, Enumeration hybrid, computing Class Group actions. ..

® Preprocessing can be started before any target is known.
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Provably succeeds when
L contains all O(29)
Voronoi relevant vectors

Complexity: =z 29+o(d)
L = {£by, £by, +(b1 — b)}
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® [, = “the a?t°(d) shortest nonzero vectors of L
® Under the Gaussian Heuristic:

Lo ={x € L: x|l < a-M(L)}\ {0}

Uniformly distributed
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® Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa'19]
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® Simplify by looking at the norm.

p(x2 — X3)

X0 = ﬁ X1 X2 X3

X4 = R
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® Model “all” events =—> Random Walk.

® Simplify by looking at the norm.

P(Xz — X3/\
X0 = ,6 X1 X2 X3 X4 = R 0

® This gives a lower bound
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® Fach path X: B =xp — x3 — ... — Xs = K gives a lower bound

P > P(X) = ﬁp(x,-_l — X;).
i=1

® Each transition probability is of the form

p(y — Z) — 2—c(y—>z)-d+o(d).

for some constant ¢(y — z) only depending on a, y and z.
® To find the best path we have to solve

p;‘rtunx C(X):= Z c(xi—1 — xi).

® Formal analysis using densities makes this bound tight (up to 2°(d))
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® C(X) is a strictly convex function for paths of fixed length.
® Unique local and global minimum.
® FEasy to optimize numerically.
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Construct local optimal s-step path analytically.

Use known constraints:

0

8X,'

C(X)=0foralll <i<s,

x0 = B, Xs = K.

Express solution in terms of a, k& using symbolic algebra.

Show which path length s is optimal.




A (surprising) analytic Solution 14 | 20

Theorem (Optimal path)
The path X : B — x1 — ... — Xs = Kk that minimizes C(X) consists of

s = [_1 + i\/(452 — a?)? — 8(282 — az)nzw

steps, and is for s > 1 given by x; = \/u - i2 + v - i + B2, with

(B%+ k% — a?)s — \/(ozzs2 — (B? + K?)) +4B32K2(s?2 — 1)

u =
s3—s
(a? —2p82)s? + (B2 — K?) + \/(a252 — (8% + K?)) + 4B%Kk2%(s2 — 1)s
vi= .
s3—s

o
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® We still need to iterate over |L| vectors per reduction step, cost O(|L|).

® NNS data structures reduce this, at the cost of more memory.
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® Memoryless NNS: No memory overhead if we process a batch of at least |L| targets.

® Each CVPP target already gives us = 1/P rerandomized targets.
® Batches of size min{1, P - |L|} are enough.
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“The randomized slicer for CVPP: sharper, faster, smaller, batchier”
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® Smaller: We decrease the memory requirement for NNS, even for a single CVPP
instance.




Conclusion 19 | 20
“The randomized slicer for CVPP: sharper, faster, smaller, batchier”

® Sharper: Full understanding of the asymptotic behaviour of the Iterative Slicer,
leading to a tight bound on the success probability.

® Faster: We obtain better time-memory trade-offs for CVPP.

® Smaller: We decrease the memory requirement for NNS, even for a single CVPP
instance.

® Batchier: We significantly improve on the per-target time complexities for
batch-CVPP.
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