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• Under the Gaussian Heuristic:

Lα = {x ∈ L : ‖x‖ ≤ α · λ1(L)} \ {0}.

Lα Bd
α·λ1(L)

Uniformly distributed
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VṼ

Pα ≥ Vol(V )/Vol(Ṽ )
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• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

VṼ

Pα ≥ Vol(V )/Vol(Ṽ )

“1-step” analysis [DLW’19]

β κ

t

p→β ≈ 1 pβ→κ = o(1)

Pα ≥ p→β · pβ→κ ≈ pβ→κ
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• Model “all” events =⇒ Random Walk.
• Simplify by looking at the norm.

‖t‖
0x4 = κx3x2x1x0 = β

p(x2 → x3)

• This gives a lower bound

P ≥
4∏

i=1
p(xi−1 → xi ).
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14 | 20A (surprising) analytic Solution
Theorem (Optimal path)
The path X : β → x1 → . . .→ xs = κ that minimizes C(X) consists of

s =

⌈
−

1
2
+

1
2α2

√
(4β2 − α2)2 − 8(2β2 − α2)κ2

⌉
steps, and is for s > 1 given by xi =

√
u · i2 + v · i + β2, with

u :=
(β2 + κ2 − α2)s −

√
(α2s2 − (β2 + κ2)) + 4β2κ2(s2 − 1)

s3 − s

v :=
(α2 − 2β2)s2 + (β2 − κ2) +

√
(α2s2 − (β2 + κ2)) + 4β2κ2(s2 − 1)s
s3 − s

.
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• Smaller: We decrease the memory requirement for NNS, even for a single CVPP

instance.
• Batchier: We significantly improve on the per-target time complexities for

batch-CVPP.
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