
The randomized slicer for CVPP: sharper, faster,
smaller, batchier

Leo Ducas, Thijs Laarhoven and Wessel van Woerden.

1 | 20Lattice

0

L ⊂ Rd

1 | 20Lattice

0 b1

b2 b1 + b2

1 | 20Shortest Vector Problem

0 λ1(L)

2 | 20Closest Vector Problem

0

t

2 | 20Closest Vector Problem

0

t

c

3 | 20Closest Vector Problem

CVP
L

t1, t2, . . .

c1, c2, . . .

• Improved complexity per target.
• Trade-off between |Data| and CVPP time complexity.
• Ideal-SVP, Enumeration hybrid, computing Class Group actions. . .
• Preprocessing can be started before any target is known.

3 | 20Closest Vector Problem with Preprocessing

Preprocessing CVPP
L,Data

t1, t2, . . .

c1, c2, . . .

L

• Improved complexity per target.
• Trade-off between |Data| and CVPP time complexity.
• Ideal-SVP, Enumeration hybrid, computing Class Group actions. . .
• Preprocessing can be started before any target is known.

3 | 20Closest Vector Problem with Preprocessing

Preprocessing CVPP
L,Data

t1, t2, . . .

c1, c2, . . .

L

• Improved complexity per target.

• Trade-off between |Data| and CVPP time complexity.
• Ideal-SVP, Enumeration hybrid, computing Class Group actions. . .
• Preprocessing can be started before any target is known.

3 | 20Closest Vector Problem with Preprocessing

Preprocessing CVPP
L,Data

t1, t2, . . .

c1, c2, . . .

L

• Improved complexity per target.
• Trade-off between |Data| and CVPP time complexity.

• Ideal-SVP, Enumeration hybrid, computing Class Group actions. . .
• Preprocessing can be started before any target is known.

3 | 20Closest Vector Problem with Preprocessing

Preprocessing CVPP
L,Data

t1, t2, . . .

c1, c2, . . .

L

• Improved complexity per target.
• Trade-off between |Data| and CVPP time complexity.
• Ideal-SVP, Enumeration hybrid, computing Class Group actions. . .

• Preprocessing can be started before any target is known.

3 | 20Closest Vector Problem with Preprocessing

Preprocessing CVPP
L,Data

t1, t2, . . .

c1, c2, . . .

L

• Improved complexity per target.
• Trade-off between |Data| and CVPP time complexity.
• Ideal-SVP, Enumeration hybrid, computing Class Group actions. . .
• Preprocessing can be started before any target is known.

4 | 20Iterative Slicer [SFS09]

0

t

4 | 20Iterative Slicer [SFS09]

b1

b2

0

t

L = {±b1,±b2,±(b1 − b2)}

4 | 20Iterative Slicer [SFS09]

0

t

L = {±b1,±b2,±(b1 − b2)}

−b2

4 | 20Iterative Slicer [SFS09]

0

t

L = {±b1,±b2,±(b1 − b2)}

−b1
−b2

4 | 20Iterative Slicer [SFS09]

0

t

L = {±b1,±b2,±(b1 − b2)}

−b1
−b2

4 | 20Iterative Slicer [SFS09]

0

t

L = {±b1,±b2,±(b1 − b2)}

−b1
−b2

Provably succeeds when
L contains all O(2d)

Voronoi relevant vectors

4 | 20Iterative Slicer [SFS09]

0

t

L = {±b1,±b2,±(b1 − b2)}

−b1
−b2

Provably succeeds when
L contains all O(2d)

Voronoi relevant vectors

Complexity: ≈ 2d+o(d)

5 | 20Randomized Iterative Slicer [Laa’16]

b1

b2

L = {±b1,±b2}

0

t

5 | 20Randomized Iterative Slicer [Laa’16]

0

t

5 | 20Randomized Iterative Slicer [Laa’16]

0

t

5 | 20Randomized Iterative Slicer [Laa’16]

0

t

t′

5 | 20Randomized Iterative Slicer [Laa’16]

0

t

t′

5 | 20Randomized Iterative Slicer [Laa’16]

0

t

t′

Succeeds with some
probability PL

after each randomization.

5 | 20Randomized Iterative Slicer [Laa’16]

0

t

t′

Succeeds with some
probability PL

after each randomization.

Complexity: ≈ |L|/PL

6 | 20Preprocessing
• Lα := “ the αd+o(d) shortest nonzero vectors of L”

• Under the Gaussian Heuristic:

Lα = {x ∈ L : ‖x‖ ≤ α · λ1(L)} \ {0}.

6 | 20Preprocessing
• Lα := “ the αd+o(d) shortest nonzero vectors of L”
• Under the Gaussian Heuristic:

Lα = {x ∈ L : ‖x‖ ≤ α · λ1(L)} \ {0}.

6 | 20Preprocessing
• Lα := “ the αd+o(d) shortest nonzero vectors of L”
• Under the Gaussian Heuristic:

Lα = {x ∈ L : ‖x‖ ≤ α · λ1(L)} \ {0}.

Bd
α·λ1(L)

6 | 20Preprocessing
• Lα := “ the αd+o(d) shortest nonzero vectors of L”
• Under the Gaussian Heuristic:

Lα = {x ∈ L : ‖x‖ ≤ α · λ1(L)} \ {0}.

Lα Bd
α·λ1(L)

Uniformly distributed

7 | 20Success Probability - Lower bounds

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−2d

2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

Laa’19
Laa’16/DLW’19

7 | 20Success Probability - Lower bounds

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−2d

2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

Laa’19
Laa’16/DLW’19

|L| ≥ 20.5d+o(d) is
enough for P ≈ 1.

7 | 20Success Probability - Lower bounds

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−2d

2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

Laa’19
Laa’16/DLW’19

Strange asymptote

7 | 20Success Probability - Lower bounds

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−2d

2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

Laa’19
Laa’16/DLW’19

Strange asymptote

Unlikely to be tight

7 | 20Success Probability - Lower bounds

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−2d

2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

Laa’19
Laa’16/DLW’19

This work

8 | 20Bounded Distance Decoding [Laa’19]

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

0.2-BDPP
0.4-BDPP
0.6-BDPP
0.8-BDDP

CVPP

8 | 20Bounded Distance Decoding [Laa’19]

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

0.2-BDPP
0.4-BDPP
0.6-BDPP
0.8-BDDP

CVPP

Laa’19 not
applicable
to BDD

8 | 20Bounded Distance Decoding [Laa’19]

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

0.2-BDPP
0.4-BDPP
0.6-BDPP
0.8-BDDP

CVPP

Laa’19 not
applicable
to BDD

Same asymptotes

8 | 20Bounded Distance Decoding [Laa’19]

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

0.2-BDPP
0.4-BDPP
0.6-BDPP
0.8-BDDP

CVPP

Laa’19 not
applicable
to BDD

Same asymptotes

BDD worse than CVP?

8 | 20Bounded Distance Decoding [This work]

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

0.2-BDPP
0.4-BDPP
0.6-BDPP
0.8-BDPP

CVPP

9 | 20Known lower bounds

• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

Ṽ

9 | 20Known lower bounds

• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

VṼ

9 | 20Known lower bounds

• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

VṼ

Pα ≥ Vol(V)/Vol(Ṽ)

9 | 20Known lower bounds

• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

VṼ

Pα ≥ Vol(V)/Vol(Ṽ)

“1-step” analysis [DLW’19]

β κ

t

p→β ≈ 1

9 | 20Known lower bounds

• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

VṼ

Pα ≥ Vol(V)/Vol(Ṽ)

“1-step” analysis [DLW’19]

β κ

t

p→β ≈ 1 pβ→κ = o(1)

9 | 20Known lower bounds

• Each lower bound looks at a different event.

Approximate Voronoi Cell [Laa’19]

VṼ

Pα ≥ Vol(V)/Vol(Ṽ)

“1-step” analysis [DLW’19]

β κ

t

p→β ≈ 1 pβ→κ = o(1)

Pα ≥ p→β · pβ→κ ≈ pβ→κ

10 | 20Multi-step analysis [This work]
• Model “all” events =⇒ Random Walk.

β

κ

p→β ≈ 1 pβ→κ = o(1)

10 | 20Multi-step analysis [This work]
• Model “all” events =⇒ Random Walk.

β

κ

p→β ≈ 1 pβ→κ = o(1)x1
x2

x3

10 | 20Multi-step analysis [This work]
• Model “all” events =⇒ Random Walk.
• Simplify by looking at the norm.

‖t‖
0x4 = κx3x2x1x0 = β

10 | 20Multi-step analysis [This work]
• Model “all” events =⇒ Random Walk.
• Simplify by looking at the norm.

‖t‖
0x4 = κx3x2x1x0 = β

p(x2 → x3)

10 | 20Multi-step analysis [This work]
• Model “all” events =⇒ Random Walk.
• Simplify by looking at the norm.

‖t‖
0x4 = κx3x2x1x0 = β

p(x2 → x3)

• This gives a lower bound

P ≥
4∏

i=1
p(xi−1 → xi).

11 | 20Optimization Problem
• Each path X : β = x0 → x1 → . . .→ xs = κ gives a lower bound

P ≥ P(X) :=
s∏

i=1
p(xi−1 → xi).

• Each transition probability is of the form

p(y → z) = 2−c(y→z)·d+o(d).

for some constant c(y → z) only depending on α, y and z.
• To find the best path we have to solve

min
path X

C(X) :=
∑

c(xi−1 → xi).

• Formal analysis using densities makes this bound tight (up to 2o(d))

11 | 20Optimization Problem
• Each path X : β = x0 → x1 → . . .→ xs = κ gives a lower bound

P ≥ P(X) :=
s∏

i=1
p(xi−1 → xi).

• Each transition probability is of the form

p(y → z) = 2−c(y→z)·d+o(d).

for some constant c(y → z) only depending on α, y and z.

• To find the best path we have to solve

min
path X

C(X) :=
∑

c(xi−1 → xi).

• Formal analysis using densities makes this bound tight (up to 2o(d))

11 | 20Optimization Problem
• Each path X : β = x0 → x1 → . . .→ xs = κ gives a lower bound

P ≥ P(X) :=
s∏

i=1
p(xi−1 → xi).

• Each transition probability is of the form

p(y → z) = 2−c(y→z)·d+o(d).

for some constant c(y → z) only depending on α, y and z.
• To find the best path we have to solve

min
path X

C(X) :=
∑

c(xi−1 → xi).

• Formal analysis using densities makes this bound tight (up to 2o(d))

11 | 20Optimization Problem
• Each path X : β = x0 → x1 → . . .→ xs = κ gives a lower bound

P ≥ P(X) :=
s∏

i=1
p(xi−1 → xi).

• Each transition probability is of the form

p(y → z) = 2−c(y→z)·d+o(d).

for some constant c(y → z) only depending on α, y and z.
• To find the best path we have to solve

min
path X

C(X) :=
∑

c(xi−1 → xi).

• Formal analysis using densities makes this bound tight (up to 2o(d))

12 | 20Convex optimization
• C(X) is a strictly convex function for paths of fixed length.

• Unique local and global minimum.
• Easy to optimize numerically.

12 | 20Convex optimization
• C(X) is a strictly convex function for paths of fixed length.
• Unique local and global minimum.

• Easy to optimize numerically.

12 | 20Convex optimization
• C(X) is a strictly convex function for paths of fixed length.
• Unique local and global minimum.
• Easy to optimize numerically.

12 | 20Convex optimization
• C(X) is a strictly convex function for paths of fixed length.
• Unique local and global minimum.
• Easy to optimize numerically.

20d 20.05d 20.1d 20.15d 20.2d 20.25d 20.3d 20.35d 20.4d 20.45d 20.5d2−2d

2−1d

20d

|Lα|

Su
cc

es
s

pr
ob

ab
ili

ty

Laa’19
Laa’16/DLW’19

Numerically optimized

13 | 20A (surprising) analytic Solution

• Construct local optimal s-step path analytically.

• Use known constraints:

∂

∂xi
C(X) = 0 for all 1 ≤ i < s,

x0 = β, xs = κ.

• Express solution in terms of α, κ using symbolic algebra.
• Show which path length s is optimal.

13 | 20A (surprising) analytic Solution

• Construct local optimal s-step path analytically.
• Use known constraints:

∂

∂xi
C(X) = 0 for all 1 ≤ i < s,

x0 = β, xs = κ.

• Express solution in terms of α, κ using symbolic algebra.
• Show which path length s is optimal.

13 | 20A (surprising) analytic Solution

• Construct local optimal s-step path analytically.
• Use known constraints:

∂

∂xi
C(X) = 0 for all 1 ≤ i < s,

x0 = β, xs = κ.

• Express solution in terms of α, κ using symbolic algebra.

• Show which path length s is optimal.

13 | 20A (surprising) analytic Solution

• Construct local optimal s-step path analytically.
• Use known constraints:

∂

∂xi
C(X) = 0 for all 1 ≤ i < s,

x0 = β, xs = κ.

• Express solution in terms of α, κ using symbolic algebra.
• Show which path length s is optimal.

14 | 20A (surprising) analytic Solution
Theorem (Optimal path)
The path X : β → x1 → . . .→ xs = κ that minimizes C(X) consists of

s =

⌈
−

1
2
+

1
2α2

√
(4β2 − α2)2 − 8(2β2 − α2)κ2

⌉
steps, and is for s > 1 given by xi =

√
u · i2 + v · i + β2, with

u :=
(β2 + κ2 − α2)s −

√
(α2s2 − (β2 + κ2)) + 4β2κ2(s2 − 1)

s3 − s

v :=
(α2 − 2β2)s2 + (β2 − κ2) +

√
(α2s2 − (β2 + κ2)) + 4β2κ2(s2 − 1)s
s3 − s

.

15 | 20Nearest Neighbor Search (NNS)

• We still need to iterate over |L| vectors per reduction step, cost Õ(|L|).

• NNS data structures reduce this, at the cost of more memory.

15 | 20Nearest Neighbor Search (NNS)

• We still need to iterate over |L| vectors per reduction step, cost Õ(|L|).
• NNS data structures reduce this, at the cost of more memory.

16 | 20New CVPP time-memory trade-off

Laa'16

DLW'19

Laa'19

CVPP complexities

with nearest neighbor search

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (≥ List size)

→
T
im
e
co
m
pl
ex
ity

17 | 20Memoryless NNS for batch CVPP

• Memoryless NNS: No memory overhead if we process a batch of at least |L| targets.

• Each CVPP target already gives us ≈ 1/P rerandomized targets.
• Batches of size min{1,P · |L|} are enough.

17 | 20Memoryless NNS for batch CVPP

• Memoryless NNS: No memory overhead if we process a batch of at least |L| targets.
• Each CVPP target already gives us ≈ 1/P rerandomized targets.

• Batches of size min{1,P · |L|} are enough.

17 | 20Memoryless NNS for batch CVPP

• Memoryless NNS: No memory overhead if we process a batch of at least |L| targets.
• Each CVPP target already gives us ≈ 1/P rerandomized targets.
• Batches of size min{1,P · |L|} are enough.

18 | 20Further improvements using memoryless NNS

Normal NNS

Memoryless

NNS

Batch-CVPP

Single-CVPP

Minimum batch size

CVPP complexities

with memoryless NNS

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (≥ List size)

→
T
im
e
co
m
pl
ex
ity

19 | 20Conclusion

“The randomized slicer for CVPP: sharper, faster, smaller, batchier”

• Sharper: Full understanding of the asymptotic behaviour of the Iterative Slicer,
leading to a tight bound on the success probability.
• Faster: We obtain better time-memory trade-offs for CVPP.
• Smaller: We decrease the memory requirement for NNS, even for a single CVPP

instance.
• Batchier: We significantly improve on the per-target time complexities for

batch-CVPP.

19 | 20Conclusion

“The randomized slicer for CVPP: sharper, faster, smaller, batchier”
• Sharper: Full understanding of the asymptotic behaviour of the Iterative Slicer,

leading to a tight bound on the success probability.

• Faster: We obtain better time-memory trade-offs for CVPP.
• Smaller: We decrease the memory requirement for NNS, even for a single CVPP

instance.
• Batchier: We significantly improve on the per-target time complexities for

batch-CVPP.

19 | 20Conclusion

“The randomized slicer for CVPP: sharper, faster, smaller, batchier”
• Sharper: Full understanding of the asymptotic behaviour of the Iterative Slicer,

leading to a tight bound on the success probability.
• Faster: We obtain better time-memory trade-offs for CVPP.

• Smaller: We decrease the memory requirement for NNS, even for a single CVPP
instance.
• Batchier: We significantly improve on the per-target time complexities for

batch-CVPP.

19 | 20Conclusion

“The randomized slicer for CVPP: sharper, faster, smaller, batchier”
• Sharper: Full understanding of the asymptotic behaviour of the Iterative Slicer,

leading to a tight bound on the success probability.
• Faster: We obtain better time-memory trade-offs for CVPP.
• Smaller: We decrease the memory requirement for NNS, even for a single CVPP

instance.

• Batchier: We significantly improve on the per-target time complexities for
batch-CVPP.

19 | 20Conclusion

“The randomized slicer for CVPP: sharper, faster, smaller, batchier”
• Sharper: Full understanding of the asymptotic behaviour of the Iterative Slicer,

leading to a tight bound on the success probability.
• Faster: We obtain better time-memory trade-offs for CVPP.
• Smaller: We decrease the memory requirement for NNS, even for a single CVPP

instance.
• Batchier: We significantly improve on the per-target time complexities for

batch-CVPP.

20 | 20Bibliography
• N. Sommer, M. Feder and O. Shalvi, 2009. Finding the closest lattice point by iterative

slicing. SIAM Journal on Discrete Mathematics, 23(2), pp.715-731.
• T. Laarhoven, 2016, August. Sieving for closest lattice vectors (with preprocessing). In

International Conference on Selected Areas in Cryptography (pp. 523-542). Springer,
Cham.
• E. Doulgerakis, T. Laarhoven and B. de Weger, 2019. Finding closest lattice vectors using

approximate Voronoi cells. PQCRYPTO.
• T. Laarhoven, 2019. Approximate Voronoi cells for lattices, revisited. In: Proceedings of

the 1st MATHCRYPT.

Thank you!

