A canonical form for positive definite matrices

[] [) [[] [] [] [] [] [] [) [) [[] []
L = Bz
[] [) [) [[] [] [] [] [] [] [) [) [] [] [)
[) [) [] [[) [] [] [] [) [) [] [] [)
/"
[] [) [] [] [[) [] [] [) [] [] [[)
0 b
[] [] [] [] [] [] [] [] [] [] [] [] [] []
[] [] [] [] [] [] [] [] [] [] [] [] [] [] []

Lattice Equality 2|20

L(B1) = L(B2)
<
3U € GL4(Z) : B1U = B,

Lattice Equality 2|20

L(B1) = L(B2)
<
3U € GL4(Z) : B1U = B,

® | inear algebra: U := BIBz.

Lattice Equality

L(B1) = L(B2)
<
3U € GL4(Z) : B1U = B,

® | inear algebra: U := BIBz.
® What if we have many bases By, By, ..., By?

2| 20

Lattice Equality

L(B1) = L(B)
<
3U € GL4(Z) : B1U = B,

® | inear algebra: U := BIBz.
® What if we have many bases By, By, ..., By?

® O(m?) pairwise checks.

2| 20

320

Hermite normal form

e B c 794 of full column rank.

320

Hermite normal form

e B ¢ 79%4 of full column rank.
® H = HNF(B) is the unique basis of L(B) s.t.

® H is in column echelon form.
® | eft of pivot: non-negative and strictly smaller than pivot.

320

Hermite normal form

e B ¢ 79%4 of full column rank.
® H = HNF(B) is the unique basis of L(B) s.t.

® H is in column echelon form.
® | eft of pivot: non-negative and strictly smaller than pivot.

® Example:

w oo o
(=R = I]

5
5
0
4

320

Hermite normal form

e B ¢ 79%4 of full column rank.
® H = HNF(B) is the unique basis of L(B) s.t.

® H is in column echelon form.
® | eft of pivot: non-negative and strictly smaller than pivot.

® Example:

w oo o
(=R = I]

PO OGO

® Polytime algorithm to compute HNF (using LLL to prevent coefficient blow-up).

320

Hermite normal form

320

Hermite normal form

L(B1) = L(B)
—
HNF(B;) = HNF(B3)

® B +— HNF(B) is what we call a canonical function.

320

Hermite normal form

L(B1) = L(B)
—
HNF(B;) = HNF(B3)

® B +— HNF(B) is what we call a canonical function.
® HNF(BU) = HNF(B) for all U € GL4(Z).

320

Hermite normal form

L(B1) = L(B)
—
HNF(B;) = HNF(B3)

® B +— HNF(B) is what we call a canonical function.
® HNF(BU) = HNF(B) for all U € GL4(Z).
® Compute HNF(By),...,HNF(By,).

320

Hermite normal form

L(B1) = L(B)
—
HNF(B;) = HNF(B3)

B — HNF(B) is what we call a canonical function.
HNF(BU) = HNF(B) for all U € GL4(Z).
Compute HNF(By), . .., HNF(B,,).

Only O(m) queries/insertions in a hash table.

320

Hermite normal form

L(B1) = L(B)
—
HNF(B;) = HNF(B3)

B — HNF(B) is what we call a canonical function.
HNF(BU) = HNF(B) for all U € GLq4(Z).

Compute HNF(By), . .., HNF(B,,).

Only O(m) queries/insertions in a hash table.

Variant can be used for left action: HNF (UB?") = HNF.(B?).

Graph Isomorphism 4|20

Graph G' = (V = [n], E')

Graph Isomorphism 4|20

Graph G' = (V = [n], E')

® Graph equality: E = E’.

Graph Isomorphism 4|20

Graph G' = (V = [n], E')

® Graph equality: E = E’.
® Graph Automorphisms: Stab(G) = {o € Symy, : o(E) = E}.

o(E) :={(a(i),o(j)) : (i,j) € E}

Graph Isomorphism 4|20

Graph G = (V =[n],EC V X V) Graph G' = (V = [n], E')

(4) ()

® Graph Isomorphism: G > G’ < o(E) = E’ for some o € Sym,,.

Canonical Graph Ordering 520

® Give a vertex ordering of the graph purely based on the graph structure.

Canonical Graph Ordering 520

® Give a vertex ordering of the graph purely based on the graph structure.

Canonical Graph Ordering 520

® Give a vertex ordering of the graph purely based on the graph structure.

® Example: vertex order that minimizes E under a lexicographic ordering.

Graph G = (V, E) Graph G’ = (V, E’)
G ~

lCan(G) 0 Can(G’)l

G/

Canonical Graph Ordering 520

® Give a vertex ordering of the graph purely based on the graph structure.
® Example: vertex order that minimizes E under a lexicographic ordering.

® Permutation (relative to input) is unique up to Stab(G).

Graph G = (V, E) Graph G’ = (V, E')

G~G

Can(G) 0 Can(G’)

© QO
b‘e Can(G) = Can(G’) ’z

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

® Several canonical graph ordering implementations exist: nauty, bliss, traces.

Complexity 6|20
® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

® Several canonical graph ordering implementations exist: nauty, bliss, traces.

® Practical Complexity: Most graphs up to thousands of vertices are no problem.

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

Several canonical graph ordering implementations exist: nauty, bliss, traces.

Practical Complexity: Most graphs up to thousands of vertices are no problem.
Theoretical:

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

Several canonical graph ordering implementations exist: nauty, bliss, traces.

Practical Complexity: Most graphs up to thousands of vertices are no problem.
Theoretical:
® | Babai, Graph isomorphism in quasipolynomial time, 2015.

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

Several canonical graph ordering implementations exist: nauty, bliss, traces.

Practical Complexity: Most graphs up to thousands of vertices are no problem.
Theoretical:

® | Babai, Graph isomorphism in quasipolynomial time, 2015.
® exp(log(|V[)°M).

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

® Several canonical graph ordering implementations exist: nauty, bliss, traces.

® Practical Complexity: Most graphs up to thousands of vertices are no problem.
® Theoretical:

® | Babai, Graph isomorphism in quasipolynomial time, 2015.
® exp(log(|V[)°M).
® Retracted in 2017 after H.A. Helfgott found a flaw in the proof.

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

® Several canonical graph ordering implementations exist: nauty, bliss, traces.
® Practical Complexity: Most graphs up to thousands of vertices are no problem.

® Theoretical:

L. Babai, Graph isomorphism in quasipolynomial time, 2015.
exp(log(|V)OW).

Retracted in 2017 after H.A. Helfgott found a flaw in the proof.
Almost immediately fixed, confirmed by H.A. Helfgott.

Complexity 6|20

® More generally for weighted complete graphs G with weights W = (wj;);;:

G~ G «— 3Jo c Sym,, : Vi,j Wo(i)o(j) = Wi,j

® Several canonical graph ordering implementations exist: nauty, bliss, traces.
® Practical Complexity: Most graphs up to thousands of vertices are no problem.

® Theoretical:

L. Babai, Graph isomorphism in quasipolynomial time, 2015.
exp(log(| V])0D).

Retracted in 2017 after H.A. Helfgott found a flaw in the proof.
Almost immediately fixed, confirmed by H.A. Helfgott.

L. Babai, Canonical form for graphs in quasipolynomial time, 2019.

Lattice Isomorphism 7120

L:(B) [] []
L] [] [] [] [] ° ° OL o [] [] [] [] °

Lattice Isomorphism 7120

Lattice Isomorphism 7120

Lattice Isomorphism

Lattice Isomorphism

L(B1) = L(By)
<

O - L(B1) = L(B)
<

O-B;-U=8B,

for some O € O4(R)

for some O € O4(R), U € GL4(Z)

8 | 20

Lattice Isomorphism 8|20

L(B1) = L(B>)

<
O-L(By) = L(By) for some O € O4(R)
<
0-B-U=8B; for some O € O4(R), U € GL4(Z)

® |f either O or U is trivial: linear algebra.

Lattice Isomorphism 8|20

L(B1) = L(B>)

<
O-L(By) = L(By) for some O € O4(R)
0-B-U=8B; for some O € O4(R), U € GL4(Z)
<~
U'B{B,U = B;B; for some U € GL4(Z)

® |f either O or U is trivial: linear algebra.

® Use OO = I to remove the orthonormal transformation.

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— xtAx for x € 79

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— xtAx for x € 79

® Geometric information remains: (Bx, By) = x'Ay.

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— xtAx for x € 79

® Geometric information remains: (Bx, By) = x'Ay.

® A; is arithmetically equivalent (~) to Ay if

U'ALU = A for some U € GLq4(Z).

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— xtAx for x € 79

® Geometric information remains: (Bx, By) = x'Ay.

® A; is arithmetically equivalent (~) to Ay if

U'ALU = A for some U € GLq4(Z).

® U above is unique up to Stab(A;) := {S € GL4(Z) : S'A1S = A1}

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— xtAx for x € 79

® Geometric information remains: (Bx, By) = x'Ay.
® A; is arithmetically equivalent (~) to Ay if

U'ALU = A for some U € GLq4(Z).
® U above is unique up to Stab(A;) := {S € GL4(Z) : S'A1S = A1}

® Can we construct a canonical function Can : Sgo — Sgo such that
(1) Can(A) ~ A.

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— x'Ax for x € 79
® Geometric information remains: (Bx, By) = x'Ay.
® A; is arithmetically equivalent (~) to Ay if
U'ALU = A for some U € GLq4(Z).
® U above is unique up to Stab(A;) := {S € GL4(Z) : S'A1S = A1}
® Can we construct a canonical function Can : Sgo — Sgo such that

(1) Can(A) ~ A.
(2) Ar ~ Ay <= Can(A;) = Can(Ay).

Quadratic Forms 9120

® The gram matrix A = BB € Sgo induces a quadratic form:

A:x— x'Ax for x € 79
® Geometric information remains: (Bx, By) = x'Ay.
® A; is arithmetically equivalent (~) to Ay if
U'ALU = A for some U € GLq4(Z).
® U above is unique up to Stab(A;) := {S € GL4(Z) : S'A1S = A1}
® Can we construct a canonical function Can : Sgo — Sgo such that

(1) Can(A) ~ A.
(2) Can(U*AU) = Can(A) for all U € GLq4(Z).

Characteristic Vector Set

L (] [] [] [] ° [] L] L] [] [] [] [] []
L [] [] [] [] ° [] L] L] L) [] [] [] [] °
[] [] [] [] ° ° L) L] ° v [] [] [] []
L] [] [] [] [] ° ° [] ° o [] [] [] [] °
0
[] [] [] [] [} ° °] ° [] [] [] [] []
L] [] [] [] [] (] ° ° ° ° [] [] [] [] °

10 | 20

Characteristic Vector Set

11 | 20

Characteristic Vector Set
® V: A+ V(A) C Z9 is a characteristic vector set function if

11 | 20

Characteristic Vector Set

® V: A+ V(A) C Z9 is a characteristic vector set function if
(1) V(A) generates Z¢ (as a Z-module).

11 | 20

Characteristic Vector Set

® V: A+ V(A) C Z9 is a characteristic vector set function if

(1) V(A) generates Z¢ (as a Z-module).
(2) V(UtAU) = U1V(A) for all U € GL4(Z).

Characteristic Vector Set 11 | 20

® V: A+ V(A) C Z9 is a characteristic vector set function if
(1) V(A) generates Z¢ (as a Z-module).
(2) V(UtAU) = U1V(A) for all U € GL4(Z).
® Property (2) is satisfied e.g. by Min(A, A) := {x € Z" : x*Ax < A}.

Characteristic Vector Set 11 | 20

® V: A+ V(A) C Z9 is a characteristic vector set function if

(1) V(A) generates Z¢ (as a Z-module).
(2) V(UtAU) = U1V(A) for all U € GL4(Z).

® Property (2) is satisfied e.g. by Min(A, A) := {x € Z" : x*Ax < A}.
® V.s(A) := Min(A, Amin(A)) with Amin(A) minimal such that (1) is satisfied.

Characteristic Vector Set 11 | 20

® V: A+ V(A) C Z9 is a characteristic vector set function if

(1) V(A) generates Z¢ (as a Z-module).
(2) V(UtAU) = U1V(A) for all U € GL4(Z).

® Property (2) is satisfied e.g. by Min(A, A) := {x € Z" : x*Ax < A}.
® V.s(A) := Min(A, Amin(A)) with Amin(A) minimal such that (1) is satisfied.
® Can be used as a proxy:

A = UtAU for some U € GL4(Z)
<
U-V(A) = V(A2) for some U € GLq4(Z)
As a Set

Characteristic Vector Set 11 | 20

® V: A+ V(A) C Z9 is a characteristic vector set function if

(1) V(A) generates Z¢ (as a Z-module).
(2) V(UtAU) = U1V(A) for all U € GL4(Z).

® Property (2) is satisfied e.g. by Min(A, A) := {x € Z" : x*Ax < A}.
® V.s(A) := Min(A, Amin(A)) with Amin(A) minimal such that (1) is satisfied.
® Can be used as a proxy:

A = UtAU for some U € GL4(Z)
<
U-V(A) = V(A2) for some U € GLq4(Z)
As a Set

® Used by W. Plesken and B. Souvignier (1997) to compute lattice automorphisms
and isomorphisms.

12 | 20

Permutation Game
® Suppose A; = UtA,U.

12 | 20

Permutation Game
® Suppose A; = UtA,U.
® V(A1) ={vi,va2,...,vp}.

12 | 20

Permutation Game

® Suppose A; = UtA,U.

® V(A1) ={vi,va2,...,vp}.

® V(Ay) = UV(A1) = {w1 = Uvq,...,w, = Uv, }.

12 | 20

Permutation Game

® Suppose A; = UtA,U.

® V(A1) ={vi,va2,...,vp}.

® V(Ay) = UV(A1) = {w1 = Uvq,...,w, = Uv, }.

® Under this ordering we necessarily have equal pairwise inner products:

viArv; = (Uv;)' Ay (Uvj) = w! Axw; for all i, j

12 | 20

Permutation Game

® Suppose A; = UtA,U.

® V(A1) ={vi,va2,...,vp}.

® V(Ay) = UV(A1) = {w1 = Uvq,...,w, = Uv, }.

® Under this ordering we necessarily have equal pairwise inner products:

viArv; = (Uv;)' Ay (Uvj) = w! Axw; for all i, j

® viAiv; = w!Ayw; for all i, is also sufficient for such a U to exist.

12 | 20

Permutation Game

® Suppose A; = UtA,U.

® V(A1) ={vi,va2,...,vp}.

® V(Ay) = UV(A1) = {w1 = Uvq,...,w, = Uv, }.

® Under this ordering we necessarily have equal pairwise inner products:

viArv; = (Uv;)' Ay (Uvj) = w! Axw; for all i, j

® viAiv; = w!Ayw; for all i, is also sufficient for such a U to exist.
o V(Az) = {Wl, 5009 W,,}.

12 | 20

Permutation Game

® Suppose A; = UtA,U.

® V(A1) ={vi,va2,...,vp}.

® V(Ay) = UV(A1) = {w1 = Uvq,...,w, = Uv, }.

® Under this ordering we necessarily have equal pairwise inner products:

viArv; = (Uv;)' Ay (Uvj) = w! Axw; for all i, j
® viAiv; = w!Ayw; for all i, is also sufficient for such a U to exist.

® V(Az) = {wi,...,wy}.

® We want to find a permutation o such that v;A1v; = w,(j)A2w,j) for all i,j.

Back to Graph Isomorphism

A = A

o : Vi, j viA1v; = We(iAaW,j)

3
G(V(A1)) ¥ G(V(A))

weights wj; = vfA1v; weights wj; = wf Ay w;

® |t becomes a graph isomorphism problem.

Back to Graph Isomorphism

A = A

o : Vi, j viA1v; = We(iAaW,j)

3
G(V(A1)) ¥ G(V(A))

weights wj; = vfA1v; weights wj; = wf Ay w;

® |t becomes a graph isomorphism problem.
® Stab(A;) = Stab(G(V(Ai)).

Canonical Matrix 14 | 20

® From the graph we obtain some canonical ordering of V(A) = {v1,...,Vv,}, say

V23 Vie e V3 vy c den

Canonical Matrix 14 | 20

® From the graph we obtain some canonical ordering of V(A) = {v1,...,Vv,}, say

SV23 Svlﬁ SV3 SV7 = Zd)(n

® Unique up to some S € Stab(A).

Canonical Matrix 14 | 20

® From the graph we obtain some canonical ordering of V(A) = {v1,...,Vv,}, say

M(A) := [Svp3 Svig oo Svi Svy € Stab(A) \ 7,dxn

® Unique up to some S € Stab(A).
® Defines a matrix M(A) € Stab(A) \ Z*" with the (canonical) property:

M(U'AU) = UIM(A) € Stab(UtAU) \ 79*"

Canonical Matrix 14 | 20

® From the graph we obtain some canonical ordering of V(A) = {v1,...,Vv,}, say

M(A) := [Svp3 Svig oo Svi Svy € Stab(A) \ 7,dxn

® Unique up to some S € Stab(A).
® Defines a matrix M(A) € Stab(A) \ Z*" with the (canonical) property:

M(U'AU) = UIM(A) € Stab(UtAU) \ 79*"

® Now we can apply HNF: Ay ~ Ay <= HNF (M(A;)) = HNF.(M(A))

15 | 20

Canonical Form

® et Ta € Stab(A) \ GL4(Z) be a transformation s.t.

M(A) = T - HNF (M(A)).

15 | 20

Canonical Form

® et Ta € Stab(A) \ GL4(Z) be a transformation s.t.

M(A) = T - HNF (M(A)).

® Note that Can(A) := T4AT, is well defined.

15 | 20

Canonical Form

® et Ta € Stab(A) \ GL4(Z) be a transformation s.t.

M(A) = T - HNF (M(A)).

® Note that Can(A) := T4AT, is well defined.
® Note that Tyiay = U1 T4 € Stab(UtAU) \ GL4(Z).

15 | 20

Canonical Form

® et Ta € Stab(A) \ GL4(Z) be a transformation s.t.
M(A) = Ta - HNF (M(A)).
® Note that Can(A) := T4AT, is well defined.

® Note that Tyiay = U1 T4 € Stab(UtAU) \ GL4(Z).

® Then we have:

Can(UtAU) = T{ItAU(UtAU) TUtAU
= TAUT'UAUU™ T4 = TLAT, = Can(A)

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.

® \We define a characteristic set V,or function such that:

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.

® \We define a characteristic set V,or function such that:
* Vo (A)] < 0(29).

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.

® \We define a characteristic set V,or function such that:
* Vo (A)] < 0(29).

® V. (A) can be computed in 20(d) arithmetical operations over F.

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.
® \We define a characteristic set V,or function such that:
* Vo (A)] < 0(29).

® V. (A) can be computed in 20(d) arithmetical operations over F.

® Quasi-polytime canonical graph algorithm on a graph of size |Vyor(A)| < 20(d),

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.
® \We define a characteristic set V,or function such that:
* Vo (A)] < 0(29).

® V. (A) can be computed in 20(d) arithmetical operations over F.
® Quasi-polytime canonical graph algorithm on a graph of size |Vyor(A)| < 20(d),

® \We can compute Can(A) in

exp(10g(|Vor(A)])°W) + 20(@) < exp(d®D)),

arithmetical operations over F C R.

Theoretical Complexity 16 | 20

® Suppose A is defined over a computable subfield F C R.
® \We define a characteristic set V,or function such that:
* Vo (A)] < 0(29).

® V. (A) can be computed in 20(d) arithmetical operations over F.
® Quasi-polytime canonical graph algorithm on a graph of size |Vyor(A)| < 20(d),

® \We can compute Can(A) in
exp(10g(|Vor(A)])°W) + 20(@) < exp(d®D)),

arithmetical operations over F C R.

® For F = (Q these operations are polynomially bounded in the input size of A.

Practical Complexity 17] 20

® Efficient in practice.

Time (s) # Vs
Type Samples | n min ‘ avg ‘ max min ‘ avg ‘ max
Perfect 10963 2-8 || 0.00041 | 0.0032 | 0.086 6 73.74 | 240
524288 | 9 0.0039 | 0.00594 | 0.11 90 | 94.04 | 272
100 10 0.0015 | 0.08 2.03 20 | 100.36 | 988
Random 100 20 0.016 0.17 4.18 40 | 114.34 | 812
100 30 2.43 23.41 511.42 || 60 | 93.46 | 310
100 40 5.18 2491 251.51 || 82 | 107.7 | 240
Catalogue | 107 2-16 || 0.00018 | 2.12 36.71 4 630.47 | 4320

Table: Timings of our implementation

Practical Complexity 17] 20

® Efficient in practice.
® |n the order of (milli)seconds up to dimension 20.

Time (s) # Vs
Type ‘ Samples ‘ n min ‘ avg ‘ max min ‘ avg ‘ max
Perfect 10963 2-8 || 0.00041 | 0.0032 | 0.086 6 73.74 | 240
524288 | 9 0.0039 | 0.00594 | 0.11 90 | 94.04 | 272
100 10 0.0015 | 0.08 2.03 20 | 100.36 | 988
Random 100 20 0.016 0.17 4.18 40 | 114.34 | 812
100 30 2.43 23.41 511.42 || 60 | 93.46 | 310
100 40 5.18 2491 251.51 || 82 | 107.7 | 240
Catalogue | 107 2-16 || 0.00018 | 2.12 36.71 4 630.47 | 4320

Table: Timings of our implementation

Applications 18 | 20

® Removing redundant forms in a large collection.

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.

® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.

® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000
® Nipp's tables of positive definite primitive quaternary forms with discriminant < 1732.

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.

® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000
® Nipp's tables of positive definite primitive quaternary forms with discriminant < 1732.
® Complete table of lattices with class number 1 due to Kirschmer—Lorch

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.
® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000

® Nipp's tables of positive definite primitive quaternary forms with discriminant < 1732.
® Complete table of lattices with class number 1 due to Kirschmer—Lorch

® Perfect form enumeration to solve the lattice packing theorem.

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.
® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000

® Nipp's tables of positive definite primitive quaternary forms with discriminant < 1732.
® Complete table of lattices with class number 1 due to Kirschmer—Lorch

® Perfect form enumeration to solve the lattice packing theorem.
® Estimates are in the order of a billion perfect forms in dimension 9.

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.
® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000

® Nipp's tables of positive definite primitive quaternary forms with discriminant < 1732.
® Complete table of lattices with class number 1 due to Kirschmer—Lorch

® Perfect form enumeration to solve the lattice packing theorem.

® Estimates are in the order of a billion perfect forms in dimension 9.
® Canonical form computed in an average of 6 milliseconds.

Applications 18 | 20

® Removing redundant forms in a large collection.

® Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's
algorithm).

® Enumeration of forms of bounded discriminant, or small (spinor) class number.

® Brandt—Intrau tables of reduced ternary forms with discriminant < 1000
® Nipp's tables of positive definite primitive quaternary forms with discriminant < 1732.
® Complete table of lattices with class number 1 due to Kirschmer—Lorch

® Perfect form enumeration to solve the lattice packing theorem.

® Estimates are in the order of a billion perfect forms in dimension 9.
® Canonical form computed in an average of 6 milliseconds.

® Algebraic Modular Forms related to Kneser's method.

19 | 20

Conclusions

® \We show an explicit and deterministic algorithm for finding a canonical form for a
positive definite matrix under unimodular integral transformations.

19 | 20

Conclusions

® \We show an explicit and deterministic algorithm for finding a canonical form for a
positive definite matrix under unimodular integral transformations.

® Based on Canonical Graph algorithms and Characteristic Vector sets.

19 | 20

Conclusions

® \We show an explicit and deterministic algorithm for finding a canonical form for a
positive definite matrix under unimodular integral transformations.

® Based on Canonical Graph algorithms and Characteristic Vector sets.

® |t is efficient in practice and has many applications.

Bibliography 20 | 20
® Babai, L., 2016. Graph isomorphism in quasipolynomial time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing.

® Helfgott, H.A., 2019. Isomorphismes de graphes en temps quasi-polynomial,
Séminaire Bourbaki. Vol. 2016/2017, no. 407.

® Babai, L., 2019. Canonical form for graphs in quasipolynomial time: preliminary
report. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing.

® Plesken, W. and Souvignier, B., 1997. Computing isometries of lattices. Journal of
Symbolic Computation, 24(3-4).

® |mplementation at: https://github.com/MathieuDutSik/polyhedral_common

https://github.com/MathieuDutSik/polyhedral_common

