A canonical form for positive definite matrices

Mathieu Dutour Sikirić (Rudjer Bosković Institute), Anna Haensch (Duquesne University), John Voight (Dartmouth College), **Wessel van Woerden** (CWI).

Lattice

• • $\mathcal{L} := \mathbf{B}\mathbb{Z}^d$ • . • • . ∕ в₂ • ٠ 0 **b**1 • • • • • • • • • • • • • • . •

Lattice

• **b**₂ $\mathcal{L} := \mathbf{B}\mathbb{Z}^d$ • • • • • • ٠ • 0 ٠ • • • • **b**1 • • • . .

• Linear algebra: $\boldsymbol{U} := \boldsymbol{B}_1^{\dagger} \boldsymbol{B}_2$.

- Linear algebra: $\boldsymbol{U} := \boldsymbol{B}_1^{\dagger} \boldsymbol{B}_2$.
- What if we have many bases B_1, B_2, \ldots, B_m ?

- Linear algebra: $\boldsymbol{U} := \boldsymbol{B}_1^{\dagger} \boldsymbol{B}_2$.
- What if we have many bases B_1, B_2, \ldots, B_m ?
- $O(m^2)$ pairwise checks.

• $B \in \mathbb{Z}^{d' \times d}$ of full column rank.

- $B \in \mathbb{Z}^{d' \times d}$ of full column rank.
- H = HNF(B) is the *unique* basis of $\mathcal{L}(B)$ s.t.
 - *H* is in column echelon form.
 - Left of pivot: non-negative and strictly smaller than pivot.

- $B \in \mathbb{Z}^{d' \times d}$ of full column rank.
- H = HNF(B) is the *unique* basis of $\mathcal{L}(B)$ s.t.
 - *H* is in column echelon form.
 - Left of pivot: non-negative and strictly smaller than pivot.
- Example:

```
\begin{pmatrix} 5 & 0 & 0 \\ 5 & 6 & 0 \\ 0 & 0 & 1 \\ 4 & 3 & 0 \end{pmatrix}
```

- $B \in \mathbb{Z}^{d' \times d}$ of full column rank.
- H = HNF(B) is the *unique* basis of $\mathcal{L}(B)$ s.t.
 - *H* is in column echelon form.
 - Left of pivot: non-negative and strictly smaller than pivot.
- Example:

$$\begin{pmatrix} 5 & 0 & 0 \\ 5 & 6 & 0 \\ 0 & 0 & 1 \\ 4 & 3 & 0 \end{pmatrix}$$

• Polytime algorithm to compute HNF (using LLL to prevent coefficient blow-up).

• $B \mapsto HNF(B)$ is what we call a **canonical** function.

- $B \mapsto HNF(B)$ is what we call a **canonical** function.
- HNF(BU) = HNF(B) for all $U \in GL_d(\mathbb{Z})$.

- $B \mapsto HNF(B)$ is what we call a **canonical** function.
- HNF(BU) = HNF(B) for all $U \in GL_d(\mathbb{Z})$.
- Compute $HNF(B_1), \ldots, HNF(B_m)$.

- $B \mapsto HNF(B)$ is what we call a **canonical** function.
- HNF(BU) = HNF(B) for all $U \in GL_d(\mathbb{Z})$.
- Compute $HNF(B_1), \ldots, HNF(B_m)$.
- Only O(m) queries/insertions in a hash table.

- $B \mapsto HNF(B)$ is what we call a **canonical** function.
- HNF(BU) = HNF(B) for all $U \in GL_d(\mathbb{Z})$.
- Compute $HNF(B_1), \ldots, HNF(B_m)$.
- Only **O**(**m**) queries/insertions in a hash table.
- Variant can be used for left action: $HNF_{L}(UB^{t}) = HNF_{L}(B^{t})$.

Graph $\boldsymbol{G} = (\boldsymbol{V} = [\boldsymbol{n}], \boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V})$

Graph G' = (V = [n], E')

Graph $\boldsymbol{G} = (\boldsymbol{V} = [\boldsymbol{n}], \boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V})$

• Graph equality: $\boldsymbol{E} = \boldsymbol{E'}$.

Graph G' = (V = [n], E')

Graph $\boldsymbol{G} = (\boldsymbol{V} = [\boldsymbol{n}], \boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V})$

Graph G' = (V = [n], E')2 3 1 4 5

- Graph equality: $\boldsymbol{E} = \boldsymbol{E'}$.
- Graph Automorphisms: $Stab(\boldsymbol{G}) = \{ \boldsymbol{\sigma} \in Sym_{|\boldsymbol{V}|} : \boldsymbol{\sigma}(\boldsymbol{E}) = \boldsymbol{E} \}.$

 $\sigma({m {E}}) \coloneqq \{(\sigma({m {i}}), \sigma({m {j}})) : ({m {i}}, {m {j}}) \in {m {E}}\}$

Graph $\boldsymbol{G} = (\boldsymbol{V} = [\boldsymbol{n}], \boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V})$ Graph G' = (V = [n], E')

• Graph Isomorphism: $\mathbf{G} \cong \mathbf{G}' \Leftrightarrow \sigma(\mathbf{E}) = \mathbf{E}'$ for some $\sigma \in \text{Sym}_{\mathbf{n}}$.

• Give a vertex ordering of the graph purely based on the graph structure.

• Give a vertex ordering of the graph purely based on the graph structure.

- Give a vertex ordering of the graph purely based on the graph structure.
- Example: vertex order that minimizes *E* under a lexicographic ordering.

- Give a vertex ordering of the graph purely based on the graph structure.
- Example: vertex order that minimizes *E* under a lexicographic ordering.
- Permutation (relative to input) is unique up to Stab(**G**).

$$\mathbf{G} \cong \mathbf{G}' \Longleftrightarrow \exists \sigma \in \operatorname{Sym}_n : \ \forall i, j \ \mathbf{w}_{\sigma(i)\sigma(j)} = \mathbf{w}'_{ij}$$

• More generally for weighted complete graphs **G** with weights $W = (w_{ij})_{ij}$:

$$\mathbf{G} \cong \mathbf{G}' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

• Several canonical graph ordering implementations exist: nauty, bliss, traces.

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.
- Theoretical:

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.
- Theoretical:
 - L. Babai, Graph isomorphism in quasipolynomial time, 2015.

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.
- Theoretical:
 - L. Babai, Graph isomorphism in quasipolynomial time, 2015.
 - $\exp(\log(|\boldsymbol{V}|)^{O(1)}).$

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.
- Theoretical:
 - L. Babai, Graph isomorphism in quasipolynomial time, 2015.
 - $\exp(\log(|\boldsymbol{V}|)^{O(1)}).$
 - Retracted in 2017 after H.A. Helfgott found a flaw in the proof.

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.
- Theoretical:
 - L. Babai, Graph isomorphism in quasipolynomial time, 2015.
 - $\exp(\log(|\boldsymbol{V}|)^{\boldsymbol{O}(1)}).$
 - Retracted in 2017 after H.A. Helfgott found a flaw in the proof.
 - Almost immediately fixed, confirmed by H.A. Helfgott.

$$G \cong G' \iff \exists \sigma \in \operatorname{Sym}_n : \forall i, j \; w_{\sigma(i)\sigma(j)} = w'_{ij}$$

- Several canonical graph ordering implementations exist: nauty, bliss, traces.
- Practical Complexity: Most graphs up to thousands of vertices are no problem.
- Theoretical:
 - L. Babai, Graph isomorphism in quasipolynomial time, 2015.
 - $\exp(\log(|\boldsymbol{V}|)^{O(1)}).$
 - Retracted in 2017 after H.A. Helfgott found a flaw in the proof.
 - Almost immediately fixed, confirmed by H.A. Helfgott.
 - L. Babai, Canonical form for graphs in quasipolynomial time, 2019.

Lattice Isomorphism

Lattice Isomorphism

7 | 20

7 | 20

8 | 20

 $\mathcal{L}(B_1) \cong \mathcal{L}(B_2)$ \iff $O \cdot \mathcal{L}(B_1) = \mathcal{L}(B_2)$ for \iff $O \cdot B_1 \cdot U = B_2$ for

for some $\boldsymbol{O} \in \boldsymbol{O_d}(\mathbb{R})$

for some $oldsymbol{O}\in O_d(\mathbb{R}), oldsymbol{U}\in {
m GL}_d(\mathbb{Z})$

8 | 20

 $\mathcal{L}(B_1) \cong \mathcal{L}(B_2)$ \iff $O \cdot \mathcal{L}(B_1) = \mathcal{L}(B_2)$ for some $O \in O_d(\mathbb{R})$ \iff $O \cdot B_1 \cdot U = B_2$ for some $O \in O_d(\mathbb{R}), U \in \operatorname{GL}_d(\mathbb{Z})$

• If either **O** or **U** is trivial: linear algebra.

 $\mathcal{L}(B_1) \cong \mathcal{L}(B_2)$ \iff $O \cdot \mathcal{L}(B_1) = \mathcal{L}(B_2) \qquad \text{for some } O \in O_d(\mathbb{R})$ \iff $O \cdot B_1 \cdot U = B_2 \qquad \text{for some } O \in O_d(\mathbb{R}), U \in GL_d(\mathbb{Z})$ \iff $U^t B_1^t B_1 U = B_2^t B_2 \qquad \text{for some } U \in GL_d(\mathbb{Z})$

8 | 20

- If either **O** or **U** is trivial: linear algebra.
- Use $O^t O = I$ to remove the orthonormal transformation.

9 | 20

• The gram matrix $A = B^t B \in \mathcal{S}^d_{>0}$ induces a quadratic form:

$$\boldsymbol{A}: \boldsymbol{x} \mapsto \boldsymbol{x}^t \boldsymbol{A} \boldsymbol{x} \qquad \qquad \text{for } \boldsymbol{x} \in \mathbb{Z}^d$$

• The gram matrix $\mathbf{A} = \mathbf{B}^t \mathbf{B} \in \mathcal{S}^d_{>0}$ induces a quadratic form:

$$A: x \mapsto x^t A x$$
 for $x \in \mathbb{Z}^d$

• Geometric information remains: $\langle Bx, By \rangle = x^t Ay$.

$$oldsymbol{A}: x \mapsto x^t A x$$
 for $x \in \mathbb{Z}^d$

- Geometric information remains: $\langle Bx, By \rangle = x^t Ay$.
- $\pmb{A_1}$ is arithmetically equivalent (\sim) to $\pmb{A_2}$ if

$$U^t A_1 U = A_2$$
 for some $U \in GL_d(\mathbb{Z})$.

• The gram matrix $\mathbf{A} = \mathbf{B}^t \mathbf{B} \in \mathcal{S}^d_{>0}$ induces a quadratic form:

$$oldsymbol{A}: x \mapsto x^t A x$$
 for $x \in \mathbb{Z}^d$

- Geometric information remains: $\langle Bx, By \rangle = x^t Ay$.
- $\pmb{A_1}$ is arithmetically equivalent (\sim) to $\pmb{A_2}$ if

$$U^t A_1 U = A_2$$
 for some $U \in GL_d(\mathbb{Z})$.

• U above is unique up to $\operatorname{Stab}(A_1) := \{ S \in \operatorname{GL}_d(\mathbb{Z}) : S^t A_1 S = A_1 \}.$

$$oldsymbol{A}: x \mapsto x^t A x$$
 for $x \in \mathbb{Z}^d$

- Geometric information remains: $\langle Bx, By \rangle = x^t Ay$.
- $\pmb{A_1}$ is arithmetically equivalent (\sim) to $\pmb{A_2}$ if

$$oldsymbol{U}^toldsymbol{A}_1oldsymbol{U}=oldsymbol{A}_2$$
 for some $oldsymbol{U}\in \operatorname{GL}_d(\mathbb{Z}).$

- U above is unique up to $\operatorname{Stab}(A_1) := \{ S \in \operatorname{GL}_d(\mathbb{Z}) : S^t A_1 S = A_1 \}.$
- Can we construct a canonical function Can : $\mathcal{S}^d_{>0} \to \mathcal{S}^d_{>0}$ such that (1) Can(A) $\sim A$.

$$oldsymbol{A}: x \mapsto x^t A x$$
 for $x \in \mathbb{Z}^d$

- Geometric information remains: $\langle Bx, By \rangle = x^t Ay$.
- A_1 is arithmetically equivalent (\sim) to A_2 if

$$oldsymbol{U}^toldsymbol{A}_1oldsymbol{U}=oldsymbol{A}_2$$
 for some $oldsymbol{U}\in \operatorname{GL}_d(\mathbb{Z}).$

- U above is unique up to $\operatorname{Stab}(A_1) := \{ S \in \operatorname{GL}_d(\mathbb{Z}) : S^t A_1 S = A_1 \}.$
- Can we construct a canonical function Can : $S^d_{\geq 0} \to S^d_{\geq 0}$ such that (1) Can(A) $\sim A$. (2) $A_1 \sim A_2 \iff Can(A_1) = Can(A_2)$.

$$oldsymbol{A}: x \mapsto x^t A x$$
 for $x \in \mathbb{Z}^d$

- Geometric information remains: $\langle Bx, By \rangle = x^t Ay$.
- A_1 is arithmetically equivalent (\sim) to A_2 if

$$U^t A_1 U = A_2$$
 for some $U \in GL_d(\mathbb{Z})$.

- U above is unique up to $\operatorname{Stab}(A_1) := \{ S \in \operatorname{GL}_d(\mathbb{Z}) : S^t A_1 S = A_1 \}.$
- Can we construct a canonical function Can : S^d_{>0} → S^d_{>0} such that (1) Can(A) ~ A.
 (2) Can(U^tAU) = Can(A) for all U ∈ GL_d(Z).

Characteristic Vector Set

• $\mathcal{V}: \mathcal{A} \mapsto \mathcal{V}(\mathcal{A}) \subset \mathbb{Z}^d$ is a characteristic vector set function if

Characteristic Vector Set

V : *A* → *V*(*A*) ⊂ Z^d is a characteristic vector set function if
 V(*A*) generates Z^d (as a Z-module).

- $\mathcal{V}: \mathcal{A} \mapsto \mathcal{V}(\mathcal{A}) \subset \mathbb{Z}^d$ is a characteristic vector set function if
 - (1) $\mathcal{V}(\mathbf{A})$ generates \mathbb{Z}^d (as a \mathbb{Z} -module).
 - (2) $\mathcal{V}(U^t A U) = U^{-1} \mathcal{V}(A)$ for all $U \in GL_d(\mathbb{Z})$.

- *V* : *A* → *V*(*A*) ⊂ Z^d is a characteristic vector set function if
 (1) *V*(*A*) generates Z^d (as a Z-module).
 (2) *V*(*U^tAU*) = *U*⁻¹*V*(*A*) for all *U* ∈ GL_d(Z).
- Property (2) is satisfied e.g. by $Min(A, \lambda) := \{x \in \mathbb{Z}^n : x^t A x \leq \lambda\}.$

- *V* : *A* → *V*(*A*) ⊂ Z^d is a characteristic vector set function if
 (1) *V*(*A*) generates Z^d (as a Z-module).
 (2) *V*(*U^tAU*) = *U*⁻¹*V*(*A*) for all *U* ∈ GL_d(Z).
- Property (2) is satisfied e.g. by $Min(A, \lambda) := \{x \in \mathbb{Z}^n : x^t A x \leq \lambda\}.$
- $V_{ms}(A) := Min(A, \lambda_{min}(A))$ with $\lambda_{min}(A)$ minimal such that (1) is satisfied.

Characteristic Vector Set

- V: A → V(A) ⊂ Z^d is a characteristic vector set function if
 (1) V(A) generates Z^d (as a Z-module).
 (2) V(U^tAU) = U⁻¹V(A) for all U ∈ GL_d(Z).
- Property (2) is satisfied e.g. by $\mathsf{Min}(\mathbf{A}, \lambda) := \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{x}^t \mathbf{A} \mathbf{x} \le \lambda \}.$
- $V_{\sf ms}({m A}) := {\sf Min}({m A}, \lambda_{\sf min}({m A}))$ with $\lambda_{\sf min}({m A})$ minimal such that (1) is satisfied.
- Can be used as a proxy:

$$egin{aligned} oldsymbol{A}_1 &= oldsymbol{U}^toldsymbol{A}_2oldsymbol{U} \ & \Longleftrightarrow \ oldsymbol{U}\cdot\mathcal{V}(oldsymbol{A}_1) &= oldsymbol{\mathcal{V}}(oldsymbol{A}_2) \ & oldsymbol{A}_{ ext{S a S et}} \mathcal{V}(oldsymbol{A}_2) \end{aligned}$$

for some $\boldsymbol{U} \in \operatorname{GL}_{\boldsymbol{d}}(\mathbb{Z})$

for some $\boldsymbol{U} \in \operatorname{GL}_{\boldsymbol{d}}(\mathbb{Z})$

Characteristic Vector Set

- V: A → V(A) ⊂ Z^d is a characteristic vector set function if
 (1) V(A) generates Z^d (as a Z-module).
 (2) V(U^tAU) = U⁻¹V(A) for all U ∈ GL_d(Z).
- Property (2) is satisfied e.g. by $\mathsf{Min}(\mathbf{A}, \lambda) := \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{x}^t \mathbf{A} \mathbf{x} \le \lambda \}.$
- $V_{\sf ms}({m A}) := {\sf Min}({m A}, \lambda_{\sf min}({m A}))$ with $\lambda_{\sf min}({m A})$ minimal such that (1) is satisfied.
- Can be used as a proxy:

$$\begin{array}{ll} \boldsymbol{A}_1 = \boldsymbol{U}^t \boldsymbol{A}_2 \boldsymbol{U} & \text{for some } \boldsymbol{U} \in \operatorname{GL}_d(\mathbb{Z}) \\ & \longleftrightarrow \\ \boldsymbol{U} \cdot \boldsymbol{\mathcal{V}}(\boldsymbol{A}_1) \underbrace{=}_{\operatorname{As a Set}} \boldsymbol{\mathcal{V}}(\boldsymbol{A}_2) & \text{for some } \boldsymbol{U} \in \operatorname{GL}_d(\mathbb{Z}) \end{array}$$

• Used by W. Plesken and B. Souvignier (1997) to compute lattice automorphisms and isomorphisms.

Permutation Game

• Suppose $A_1 = U^t A_2 U$.

Permutation Game

- Suppose $A_1 = U^t A_2 U$.
- $\mathcal{V}(\mathbf{A}_1) = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}.$

12 | 20

Permutation Game

- Suppose $A_1 = U^t A_2 U$.
- $\mathcal{V}(\mathbf{A}_1) = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$.
- $\mathcal{V}(\mathcal{A}_2) = \mathcal{U}\mathcal{V}(\mathcal{A}_1) = \{w_1 = \mathcal{U}v_1, \ldots, w_n = \mathcal{U}v_n\}.$

Permutation Game

- Suppose $A_1 = U^t A_2 U$.
- $\mathcal{V}(\mathbf{A}_1) = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}.$
- $\mathcal{V}(\mathbf{A}_2) = \mathbf{U}\mathcal{V}(\mathbf{A}_1) = \{\mathbf{w}_1 = \mathbf{U}\mathbf{v}_1, \ldots, \mathbf{w}_n = \mathbf{U}\mathbf{v}_n\}.$
- Under this ordering we *necessarily* have equal pairwise inner products:

$$oldsymbol{v}_i^toldsymbol{A}_1oldsymbol{v}_j=(oldsymbol{U}oldsymbol{v}_i)^toldsymbol{A}_2(oldsymbol{U}oldsymbol{v}_j)=oldsymbol{w}_i^toldsymbol{A}_2oldsymbol{w}_j$$
 for all $oldsymbol{i},oldsymbol{j}$

Permutation Game

- Suppose $A_1 = U^t A_2 U$.
- $\mathcal{V}(\mathbf{A}_1) = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$.
- $\mathcal{V}(\mathbf{A}_2) = \mathbf{U}\mathcal{V}(\mathbf{A}_1) = \{\mathbf{w}_1 = \mathbf{U}\mathbf{v}_1, \ldots, \mathbf{w}_n = \mathbf{U}\mathbf{v}_n\}.$
- Under this ordering we *necessarily* have equal pairwise inner products:

$$oldsymbol{v}_i^toldsymbol{A}_1oldsymbol{v}_j=(oldsymbol{U}oldsymbol{v}_i)^toldsymbol{A}_2(oldsymbol{U}oldsymbol{v}_j)=oldsymbol{w}_i^toldsymbol{A}_2oldsymbol{w}_j$$
 for all $oldsymbol{i},oldsymbol{j}$

• $v_i^t A_1 v_j = w_i^t A_2 w_j$ for all i, j is also *sufficient* for such a **U** to exist.

Permutation Game

- Suppose $A_1 = U^t A_2 U$.
- $\mathcal{V}(\mathbf{A}_1) = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}.$
- $\mathcal{V}(\mathbf{A}_2) = \mathbf{U}\mathcal{V}(\mathbf{A}_1) = \{\mathbf{w}_1 = \mathbf{U}\mathbf{v}_1, \ldots, \mathbf{w}_n = \mathbf{U}\mathbf{v}_n\}.$
- Under this ordering we *necessarily* have equal pairwise inner products:

$$oldsymbol{v}_i^toldsymbol{A}_1oldsymbol{v}_j=(oldsymbol{U}oldsymbol{v}_i)^toldsymbol{A}_2(oldsymbol{U}oldsymbol{v}_j)=oldsymbol{w}_i^toldsymbol{A}_2oldsymbol{w}_j$$
 for all $oldsymbol{i},oldsymbol{j}$

- $v_i^t A_1 v_j = w_i^t A_2 w_j$ for all i, j is also *sufficient* for such a **U** to exist.
- $\mathcal{V}(A_2) = \{w_1, \ldots, w_n\}.$

Permutation Game

- Suppose $A_1 = U^t A_2 U$.
- $\mathcal{V}(\mathbf{A}_1) = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}.$
- $\mathcal{V}(\mathbf{A}_2) = \mathbf{U}\mathcal{V}(\mathbf{A}_1) = \{\mathbf{w}_1 = \mathbf{U}\mathbf{v}_1, \ldots, \mathbf{w}_n = \mathbf{U}\mathbf{v}_n\}.$
- Under this ordering we *necessarily* have equal pairwise inner products:

$$oldsymbol{v}_i^toldsymbol{A}_1oldsymbol{v}_j=(oldsymbol{U}oldsymbol{v}_i)^toldsymbol{A}_2(oldsymbol{U}oldsymbol{v}_j)=oldsymbol{w}_i^toldsymbol{A}_2oldsymbol{w}_j$$
 for all $oldsymbol{i},oldsymbol{j}$

- $v_i^t A_1 v_j = w_i^t A_2 w_j$ for all i, j is also *sufficient* for such a **U** to exist.
- $\mathcal{V}(A_2) = \{w_1, \ldots, w_n\}.$
- We want to find a permutation σ such that $v_i A_1 v_j = w_{\sigma(i)} A_2 w_{\sigma(j)}$ for all i, j.

Back to Graph Isomorphism

$G(\mathcal{V}(A_1))$ $G(\mathcal{V}(A_2))$ $A_1 \cong A_2$ 2 ↕ $\widehat{(\mathbf{5})} \exists \boldsymbol{\sigma} : \forall \boldsymbol{i}, \boldsymbol{j} \; \boldsymbol{v}_{\boldsymbol{i}}^t \boldsymbol{A}_1 \boldsymbol{v}_{\boldsymbol{j}} = \boldsymbol{w}_{\sigma(\boldsymbol{i})} \boldsymbol{A}_2 \boldsymbol{w}_{\sigma(\boldsymbol{j})}$ ↕ 3 3 $G(\mathcal{V}(A_1)) \cong G(\mathcal{V}(A_2))$ 4 weights $\mathbf{w}_{ii} = \mathbf{v}_i^t \mathbf{A}_1 \mathbf{v}_i$

5 4 weights $w'_{ii} = w_i^t A_2 w_i$

13 | 20

• It becomes a graph isomorphism problem.

Back to Graph Isomorphism

$G(\mathcal{V}(A_2))$ $\mathbf{\overline{5}} \exists \boldsymbol{\sigma} : \forall \boldsymbol{i}, \boldsymbol{j} \ \boldsymbol{v}_{\boldsymbol{i}}^{t} \boldsymbol{A}_{1} \boldsymbol{v}_{\boldsymbol{i}} = \boldsymbol{w}_{\sigma(\boldsymbol{i})} \boldsymbol{A}_{2} \boldsymbol{w}_{\sigma(\boldsymbol{i})}$ 5

3

4 weights $\mathbf{w}_{ii} = \mathbf{v}_i^t \mathbf{A}_1 \mathbf{v}_i$

 $G(\mathcal{V}(A_1))$

2

3

 $G(\mathcal{V}(\mathcal{A}_1)) \cong G(\mathcal{V}(\mathcal{A}_2))$

 $A_1 \cong A_2$

↕

↕

weights $w'_{ii} = w_i^t A_2 w_i$

4

13 | 20

- It becomes a graph isomorphism problem.
- Stab(A_i) \cong Stab($G(\mathcal{V}(A_i))$).

• From the graph we obtain some canonical ordering of $\mathcal{V}(\mathbf{A}) = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, say

14 | 20

• From the graph we obtain some canonical ordering of $\mathcal{V}(\mathbf{A}) = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, say

14 | 20

• Unique up to some $S \in \text{Stab}(A)$.

- From the graph we obtain some canonical ordering of $\mathcal{V}(\mathbf{A}) = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, say
- Unique up to some $S \in \text{Stab}(A)$.
- Defines a matrix $M(A) \in \text{Stab}(A) \setminus \mathbb{Z}^{d \times n}$ with the (canonical) property:

 $M(U^tAU) \equiv U^{-1}M(A) \in \operatorname{Stab}(U^tAU) \setminus \mathbb{Z}^{d imes n}$

14 | 20

- From the graph we obtain some canonical ordering of $\mathcal{V}(\mathbf{A}) = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, say
 - $M(A) :\equiv \begin{vmatrix} Sv_{23} & Sv_{16} \\ \vdots & \vdots \\ \vdots & \vdots \end{vmatrix} \in \operatorname{Stab}(A) \setminus \mathbb{Z}^{d \times n}$

14 | 20

- Unique up to some $S \in \text{Stab}(A)$.
- Defines a matrix $M(A) \in \text{Stab}(A) \setminus \mathbb{Z}^{d \times n}$ with the (canonical) property:

 $M(U^tAU) \equiv U^{-1}M(A) \in \operatorname{Stab}(U^tAU) \setminus \mathbb{Z}^{d imes n}$

• Now we can apply HNF: $A_1 \sim A_2 \iff \text{HNF}_L(M(A_1)) = \text{HNF}_L(M(A_2))$

Canonical Form

• Let $T_A \in \text{Stab}(A) \setminus \text{GL}_d(\mathbb{Z})$ be a transformation s.t.

 $M(A) \equiv T_A \cdot HNF_L(M(A)).$

Canonical Form

• Let $T_A \in \text{Stab}(A) \setminus \text{GL}_d(\mathbb{Z})$ be a transformation s.t.

 $M(A) \equiv T_A \cdot HNF_L(M(A)).$

• Note that $Can(\mathbf{A}) := \mathbf{T}_{\mathbf{A}}^{t} \mathbf{A} \mathbf{T}_{\mathbf{A}}$ is well defined.
Canonical Form

• Let $T_A \in \text{Stab}(A) \setminus \text{GL}_d(\mathbb{Z})$ be a transformation s.t.

 $M(A) \equiv T_A \cdot HNF_L(M(A)).$

- Note that $Can(A) := T_A^t A T_A$ is well defined.
- Note that $T_{U^tAU} = U^{-1}T_A \in \operatorname{Stab}(U^tAU) \setminus \operatorname{GL}_d(\mathbb{Z}).$

Canonical Form

• Let $T_A \in \text{Stab}(A) \setminus \text{GL}_d(\mathbb{Z})$ be a transformation s.t.

 $M(A) \equiv T_A \cdot HNF_L(M(A)).$

- Note that $Can(A) := T_A^t A T_A$ is well defined.
- Note that $T_{U^tAU} = U^{-1}T_A \in \operatorname{Stab}(U^tAU) \setminus \operatorname{GL}_d(\mathbb{Z}).$
- Then we have:

 $Can(U^{t}AU) = T_{U^{t}AU}^{t}(U^{t}AU)T_{U^{t}AU}$ $= T_{A}U^{-t}U^{t}AUU^{-1}T_{A} = T_{A}^{t}AT_{A} = Can(A)$

16 | 20

• Suppose **A** is defined over a computable subfield $F \subset \mathbb{R}$.

- Suppose **A** is defined over a computable subfield $F \subset \mathbb{R}$.
- \bullet We define a characteristic set $\mathcal{V}_{\mathsf{vor}}$ function such that:

- Suppose **A** is defined over a computable subfield $\mathbf{F} \subset \mathbb{R}$.
- \bullet We define a characteristic set $\mathcal{V}_{\mathsf{vor}}$ function such that:
 - $|\mathcal{V}_{vor}(\mathbf{A})| \leq O(2^d).$

- Suppose **A** is defined over a computable subfield $\mathbf{F} \subset \mathbb{R}$.
- \bullet We define a characteristic set $\mathcal{V}_{\mathsf{vor}}$ function such that:
 - $|\mathcal{V}_{vor}(\mathbf{A})| \leq O(2^d)$.
 - $\mathcal{V}_{vor}(\mathbf{A})$ can be computed in $2^{O(d)}$ arithmetical operations over \mathbf{F} .

- Suppose **A** is defined over a computable subfield $\mathbf{F} \subset \mathbb{R}$.
- We define a characteristic set $\mathcal{V}_{\mathsf{vor}}$ function such that:
 - $|\mathcal{V}_{vor}(\mathbf{A})| \leq O(2^d).$
 - $\mathcal{V}_{vor}(\mathbf{A})$ can be computed in $2^{O(d)}$ arithmetical operations over \mathbf{F} .
- Quasi-polytime canonical graph algorithm on a graph of size $|\mathcal{V}_{\text{vor}}(\mathcal{A})| \leq 2^{O(d)}$.

16 | 20

- Suppose **A** is defined over a computable subfield $\mathbf{F} \subset \mathbb{R}$.
- We define a characteristic set $\mathcal{V}_{\mathsf{vor}}$ function such that:
 - $|\mathcal{V}_{vor}(\mathbf{A})| \leq O(2^d).$
 - $\mathcal{V}_{vor}(\mathbf{A})$ can be computed in $2^{O(d)}$ arithmetical operations over \mathbf{F} .
- Quasi-polytime canonical graph algorithm on a graph of size $|\mathcal{V}_{vor}(\mathcal{A})| \leq 2^{O(d)}$.
- We can compute Can(**A**) in

$$\exp(\log(|\mathcal{V}_{\mathsf{vor}}(\boldsymbol{A})|)^{\boldsymbol{O}(1)}) + 2^{\boldsymbol{O}(\boldsymbol{d})} \leq \exp(\boldsymbol{d}^{\boldsymbol{O}(1)}),$$

arithmetical operations over $\mathbf{F} \subset \mathbb{R}$.

16 | 20

- Suppose **A** is defined over a computable subfield $\mathbf{F} \subset \mathbb{R}$.
- \bullet We define a characteristic set $\mathcal{V}_{\mathsf{vor}}$ function such that:
 - $|\mathcal{V}_{vor}(\mathbf{A})| \leq O(2^d).$
 - $\mathcal{V}_{vor}(\mathbf{A})$ can be computed in $2^{O(d)}$ arithmetical operations over \mathbf{F} .
- Quasi-polytime canonical graph algorithm on a graph of size $|\mathcal{V}_{\text{vor}}(\mathcal{A})| \leq 2^{O(d)}$.
- We can compute Can(**A**) in

$$\exp(\log(|\mathcal{V}_{\mathsf{vor}}(\boldsymbol{A})|)^{\boldsymbol{O}(1)}) + 2^{\boldsymbol{O}(\boldsymbol{d})} \leq \exp(\boldsymbol{d}^{\boldsymbol{O}(1)}),$$

arithmetical operations over $\mathbf{F} \subset \mathbb{R}$.

• For $\mathbf{F} = \mathbb{Q}$ these operations are polynomially bounded in the input size of \mathbf{A} .

Practical Complexity

17 | 20

• Efficient in practice.

			Time (s)			$\# oldsymbol{\mathcal{V}}_{ms}$		
Туре	Samples	n	min	avg	max	min	avg	max
Perfect	10963	2–8	0.00041	0.0032	0.086	6	73.74	240
	524 288	9	0.0039	0.00594	0.11	90	94.04	272
Random	100	10	0.0015	0.08	2.03	20	100.36	988
	100	20	0.016	0.17	4.18	40	114.34	812
	100	30	2.43	23.41	511.42	60	93.46	310
	100	40	5.18	24.91	251.51	82	107.7	240
Catalogue	107	2-16	0.00018	2.12	36.71	4	630.47	4320

Table: Timings of our implementation

Practical Complexity

17 | 20

- Efficient in practice.
- In the order of (milli)seconds up to dimension 20.

			Time (s)			$\# oldsymbol{\mathcal{V}}_{ms}$		
Туре	Samples	n	min	avg	max	min	avg	max
Perfect	10963	2–8	0.00041	0.0032	0.086	6	73.74	240
	524 288	9	0.0039	0.00594	0.11	90	94.04	272
Random	100	10	0.0015	0.08	2.03	20	100.36	988
	100	20	0.016	0.17	4.18	40	114.34	812
	100	30	2.43	23.41	511.42	60	93.46	310
	100	40	5.18	24.91	251.51	82	107.7	240
Catalogue	107	2-16	0.00018	2.12	36.71	4	630.47	4320

Table: Timings of our implementation

18 | 20

• Removing redundant forms in a large collection.

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$
 - Nipp's tables of positive definite primitive quaternary forms with discriminant \leq 1732.

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$
 - Nipp's tables of positive definite primitive quaternary forms with discriminant \leq 1732.
 - ullet Complete table of lattices with class number ${\bf 1}$ due to Kirschmer–Lorch

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$
 - Nipp's tables of positive definite primitive quaternary forms with discriminant \leq 1732.
 - $\bullet\,$ Complete table of lattices with class number 1 due to Kirschmer–Lorch
- Perfect form enumeration to solve the lattice packing theorem.

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$
 - Nipp's tables of positive definite primitive quaternary forms with discriminant \leq 1732.
 - ullet Complete table of lattices with class number ${\bf 1}$ due to Kirschmer–Lorch
- Perfect form enumeration to solve the lattice packing theorem.
 - Estimates are in the order of a billion perfect forms in dimension 9.

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$
 - Nipp's tables of positive definite primitive quaternary forms with discriminant \leq 1732.
 - ullet Complete table of lattices with class number ${\bf 1}$ due to Kirschmer–Lorch
- Perfect form enumeration to solve the lattice packing theorem.
 - Estimates are in the order of a billion perfect forms in dimension 9.
 - Canonical form computed in an average of **6** milliseconds.

- Removing redundant forms in a large collection.
- Often a critical bottleneck in enumeration algorithms (Kneser's method, Voronoi's algorithm).
- Enumeration of forms of bounded discriminant, or small (spinor) class number.
 - $\bullet\,$ Brandt–Intrau tables of reduced ternary forms with discriminant $\leq 1000\,$
 - Nipp's tables of positive definite primitive quaternary forms with discriminant \leq 1732.
 - ullet Complete table of lattices with class number ${\bf 1}$ due to Kirschmer–Lorch
- Perfect form enumeration to solve the lattice packing theorem.
 - Estimates are in the order of a billion perfect forms in dimension 9.
 - Canonical form computed in an average of **6** milliseconds.
- Algebraic Modular Forms related to Kneser's method.

Conclusions

• We show an **explicit** and **deterministic** algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations.

Conclusions

- We show an **explicit** and **deterministic** algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations.
- Based on Canonical Graph algorithms and Characteristic Vector sets.

Conclusions

- We show an **explicit** and **deterministic** algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations.
- Based on Canonical Graph algorithms and Characteristic Vector sets.
- It is efficient in practice and has many applications.

Bibliography

- Babai, L., 2016. *Graph isomorphism in quasipolynomial time*. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.
- Helfgott, H.A., 2019. *Isomorphismes de graphes en temps quasi-polynomial*, Séminaire Bourbaki. Vol. 2016/2017, no. 407.
- Babai, L., 2019. *Canonical form for graphs in quasipolynomial time: preliminary report.* In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing.
- Plesken, W. and Souvignier, B., 1997. *Computing isometries of lattices*. Journal of Symbolic Computation, 24(3-4).
- Implementation at: https://github.com/MathieuDutSik/polyhedral_common