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Motivation
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Better density
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Can we use these in cryptography?
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HAWK - a Signature Scheme from Zn

Simplicity of Zn + module-LIP*
⇓

competitive signature scheme (vs FN-DSA!)

Ç Fast: KeyGen: 3.5 ms1 Sign/Verify: < 0.1 ms
õ Compact: |øpub| = 1024 bytes |sig| = 555 bytes
å Hardware friendly: ≤ 12KiB RAM no float/double

Team from academia and industry: Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr,
Yu-Hsuan Huang, Thomas Pornin, Eamonn W. Postlethwaite, Thomas Prest, Ludo N. Pulles, vW

Only lattice scheme in round 2 of NIST call for additional signature schemes.

PQC forum Sept. 12:
‘HAWK is a very cool scheme’

1On Ludo’s Laptop
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Algebraic Structure

Cryptography is a trade-off between efficiency︸ ︷︷ ︸
structure

and security

Module-LIP: replace L = B · Zn by L = B · Or
K for ring of integers OK .

1
(most structure)

2 ≥ 3 rank r
(less structure)

Totally real Totally imaginary

Totally real
[MPMPW24]

So2S: q = a2 + b2

‘A single real embedding is all it takes’

[APMvW25]
Totally imaginary
HAWK (CM field)

[CMEPMPW25,CM25]:
So4S: q = a2 + b2 + c2 + d2

attack does not work



7 / 12

Algebraic Structure

Cryptography is a trade-off between efficiency︸ ︷︷ ︸
structure

and security

Module-LIP: replace L = B · Zn by L = B · Or
K for ring of integers OK .

1
(most structure)

2 ≥ 3 rank r
(less structure)

Totally real Totally imaginary

Totally real
[MPMPW24]

So2S: q = a2 + b2

‘A single real embedding is all it takes’

[APMvW25]
Totally imaginary
HAWK (CM field)

[CMEPMPW25,CM25]:
So4S: q = a2 + b2 + c2 + d2

attack does not work



7 / 12

Algebraic Structure

Cryptography is a trade-off between efficiency︸ ︷︷ ︸
structure

and security

Module-LIP: replace L = B · Zn by L = B · Or
K for ring of integers OK .

1
(most structure)

2 ≥ 3 rank r
(less structure)

Totally real Totally imaginary

Totally real
[MPMPW24]

So2S: q = a2 + b2

‘A single real embedding is all it takes’

[APMvW25]
Totally imaginary
HAWK (CM field)

[CMEPMPW25,CM25]:
So4S: q = a2 + b2 + c2 + d2

attack does not work



7 / 12

Algebraic Structure

Cryptography is a trade-off between efficiency︸ ︷︷ ︸
structure

and security

Module-LIP: replace L = B · Zn by L = B · Or
K for ring of integers OK .

1
(most structure)

2 ≥ 3 rank r
(less structure)

Totally real Totally imaginary

Totally real
[MPMPW24]

So2S: q = a2 + b2

‘A single real embedding is all it takes’

[APMvW25]
Totally imaginary
HAWK (CM field)

[CMEPMPW25,CM25]:
So4S: q = a2 + b2 + c2 + d2

attack does not work



7 / 12

Algebraic Structure

Cryptography is a trade-off between efficiency︸ ︷︷ ︸
structure

and security

Module-LIP: replace L = B · Zn by L = B · Or
K for ring of integers OK .

1
(most structure)

2 ≥ 3 rank r
(less structure)

Totally real

Totally imaginaryTotally real
[MPMPW24]

So2S: q = a2 + b2

‘A single real embedding is all it takes’

[APMvW25]

Totally imaginary
HAWK (CM field)

[CMEPMPW25,CM25]:
So4S: q = a2 + b2 + c2 + d2

attack does not work



7 / 12

Algebraic Structure

Cryptography is a trade-off between efficiency︸ ︷︷ ︸
structure

and security

Module-LIP: replace L = B · Zn by L = B · Or
K for ring of integers OK .

1
(most structure)

2 ≥ 3 rank r
(less structure)

Totally real Totally imaginary

Totally real
[MPMPW24]

So2S: q = a2 + b2

‘A single real embedding is all it takes’

[APMvW25]
Totally imaginary
HAWK (CM field)

[CMEPMPW25,CM25]:
So4S: q = a2 + b2 + c2 + d2

attack does not work



8 / 12

Invariants
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If det(L1) ̸= det(L2), then ∆LIP can be solved efficiently.
Lemma:

Conjecture [DvW22]: Genus is the strongest efficiently computable invariant.
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Genus Invariant

[BDG23] SIS lattices concentrate in only two genera.
[vW24] Random lattices in a genus behave like general random lattices.

⇒ any genus contains dense and smooth lattices ⇒ tighter security proofs

Module structure + Genus?
[LLM24] Spinor genus stronger when rank r = 2 and totally real.

[vG25] > 21050 module lattices have the same genus as HAWK.
[M25] > 2850 module lattices have the same special genus as HAWK.

Conclusion: invariants do not seem to affect security.
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KEM&PKEs
Zn or BWn + ∆LIP
[ARLW24,CBZIPC24]

Various Commitment Schemes
LIP (group action)

[JWLLGPW25,LJPW25]

Unbounded Updatable Encryption
∆PCE [ABL25] or ∆LIP (WIP)

Fully Homomorphic Encryption
∆LIP [BMM25,LRvW25]

Allows for Advanced Cryptographic Constructions
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Reductions

LIP ∆LIP

trivial

Linear or Signed Permutation
Code Equivalence

[BW24]
direct-sum lattices [vGvW25]

for HAWK:
O(d2) module-∆LIP calls

⇒ key recovery (LIP).
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The Future of LIP?

LIP+Zn is enough to match and improve on LWE and NTRU.

Better lattices ⇒ smaller keys and ciphertexts

Reductions: WC → AC within genus?
LIP ↔ ∆LIP?

Cryptanalysis: module-LIP & remarkable lattices

Thank you!
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