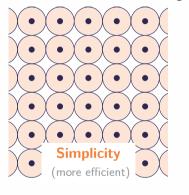
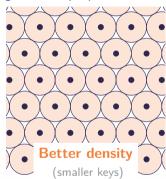
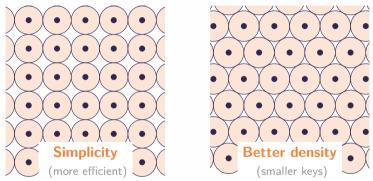
A Short Survey of Cryptography Based on the Lattice Isomorphism Problem


Wessel van Woerden (PQShield).

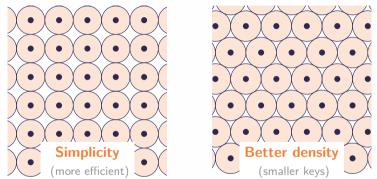


LWE, SIS, NTRU lattices: versatile, but poor geometry.

LWE, SIS, NTRU lattices: versatile, but poor geometry.

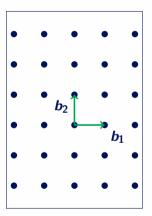

Many remarkable lattices exist with great geometric properties.

LWE, SIS, NTRU lattices: versatile, but poor geometry.

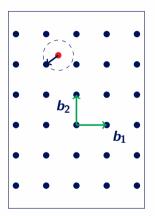

Many remarkable lattices exist with great geometric properties.

Can we use these in cryptography?

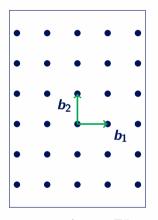
LWE, SIS, NTRU lattices: versatile, but poor geometry.


Many remarkable lattices exist with great geometric properties.

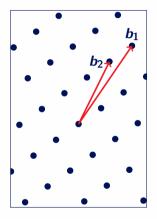
Can we use these in cryptography?


Lattice Isomorphism Problem: yes, we can!

Lattice
$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

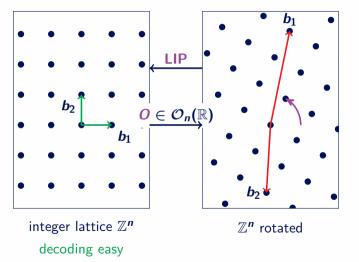

integer lattice \mathbb{Z}^n

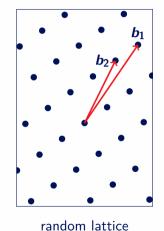
Lattice
$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

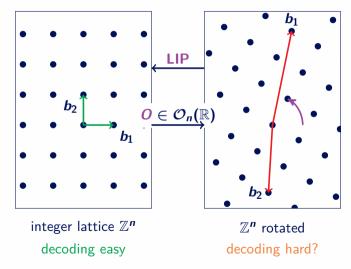


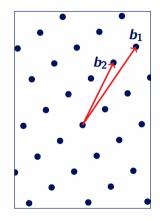
integer lattice \mathbb{Z}^n decoding easy

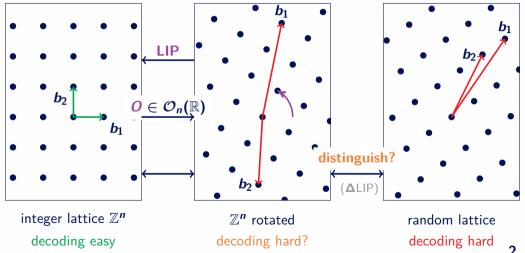
Lattice
$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n \}$$

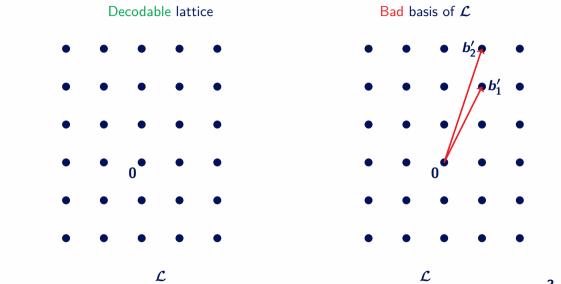


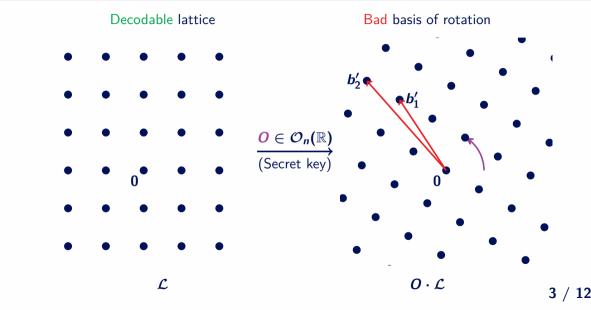

integer lattice \mathbb{Z}^n decoding easy

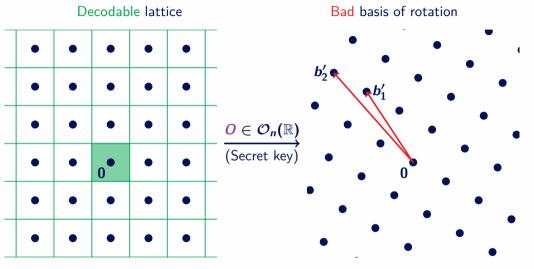

random lattice decoding hard

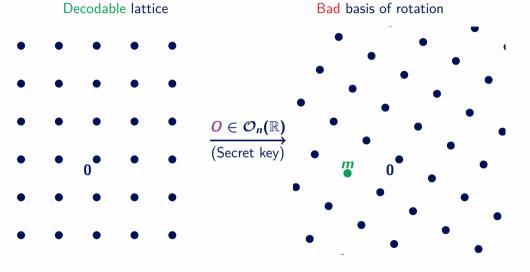

Lattice
$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

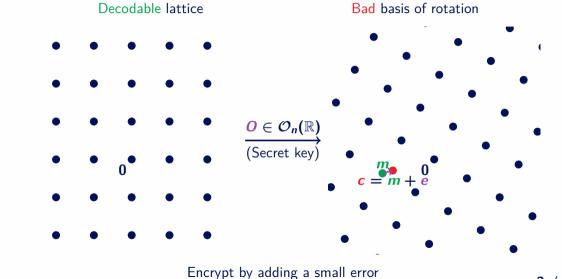

Lattice
$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

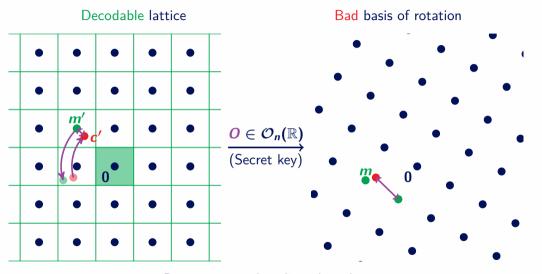


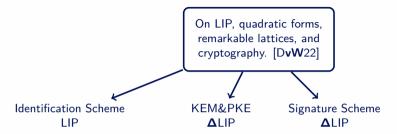


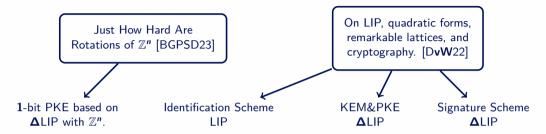

random lattice decoding hard

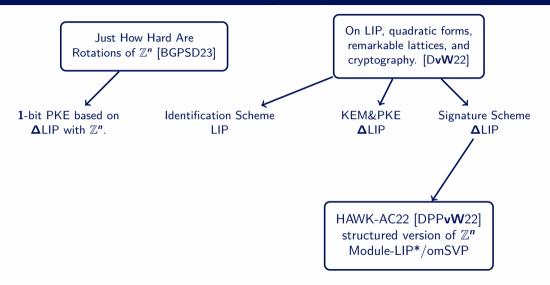

Lattice
$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n$$

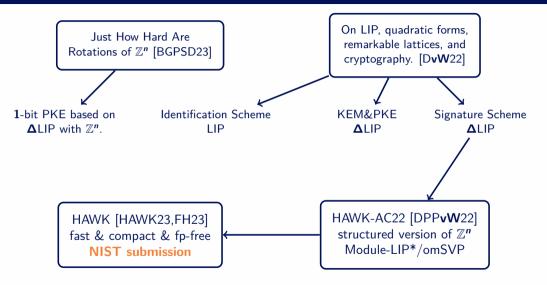












Simplicity of \mathbb{Z}^n + module-LIP*

1

competitive signature scheme (vs FN-DSA!)

¹On Ludo's Laptop

Simplicity of
$$\mathbb{Z}^n$$
 + module-LIP*

1

competitive signature scheme (vs FN-DSA!)

? Fast: KeyGen: **3.5** ms¹ Sign/Verify: < **0.1** ms

Compact: $|\mathcal{P}_{pub}| = 1024 \text{ bytes} |\text{sig}| = 555 \text{ bytes}$

 $m{\digamma}$ Hardware friendly: ≤ 12 KiB RAM no float/double

¹On Ludo's Laptop

Simplicity of
$$\mathbb{Z}^n$$
 + module-LIP*

1

competitive signature scheme (vs FN-DSA!)

F Fast: KeyGen: **3.5** ms¹ Sign/Verify: < **0.1** ms

Compact: $|\mathcal{P}_{pub}| = 1024 \text{ bytes} |\text{sig}| = 555 \text{ bytes}$

 $m{\mathcal{F}}$ Hardware friendly: $\leq m{12}$ KiB RAM no float/double

Team from academia and industry: Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr, Yu-Hsuan Huang, Thomas Pornin, Eamonn W. Postlethwaite, Thomas Prest, Ludo N. Pulles, vW

Only lattice scheme in round 2 of NIST call for additional signature schemes.

¹On Ludo's Laptop

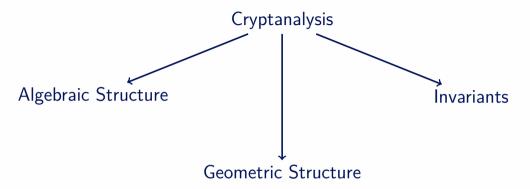
Simplicity of
$$\mathbb{Z}^n$$
 + module-LIP*

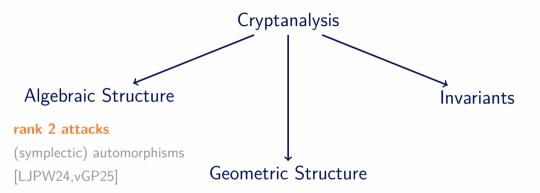
1

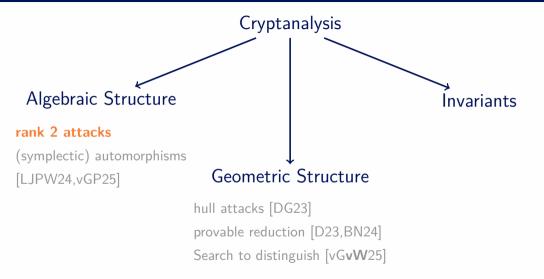
competitive signature scheme (vs FN-DSA!)

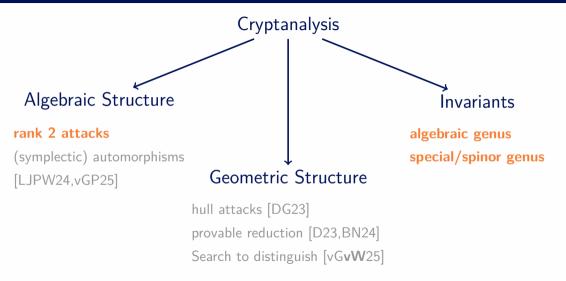
4 Fast: KeyGen: **3.5** ms¹ Sign/Verify: < **0.1** ms

Compact: $|\mathcal{P}_{pub}| = 1024 \text{ bytes} |\text{sig}| = 555 \text{ bytes}$


 $m{\mathcal{F}}$ Hardware friendly: $\leq m{12}$ KiB RAM no float/double


Team from academia and industry: Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr, Yu-Hsuan Huang, Thomas Pornin, Eamonn W. Postlethwaite, Thomas Prest, Ludo N. Pulles, vW


Only lattice scheme in round **2** of NIST call for additional signature schemes.


PQC forum Sept. 12: 'HAWK is a very cool scheme'

¹On Ludo's Laptop

Cryptography is a trade-off between efficiency and security

Cryptography is a trade-off between efficiency and security

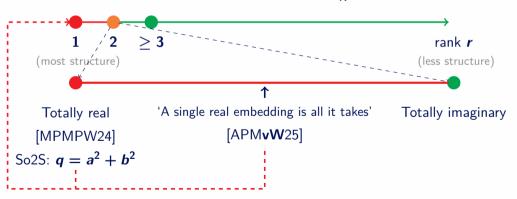
Module-LIP: replace $\mathcal{L} = B \cdot \mathbb{Z}^n$ by $\mathcal{L} = B \cdot O_K^r$ for ring of integers O_K .

Cryptography is a trade-off between efficiency and security

Module-LIP: replace $\mathcal{L} = B \cdot \mathbb{Z}^n$ by $\mathcal{L} = B \cdot O_K^r$ for ring of integers O_K .

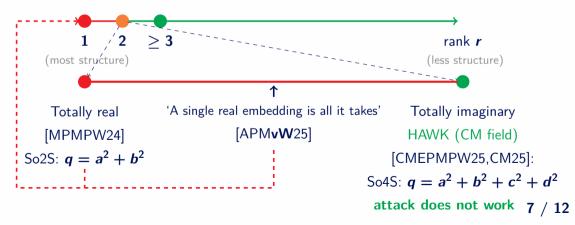
Cryptography is a trade-off between efficiency and security

Module-LIP: replace $\mathcal{L} = B \cdot \mathbb{Z}^n$ by $\mathcal{L} = B \cdot O_K^r$ for ring of integers O_K .

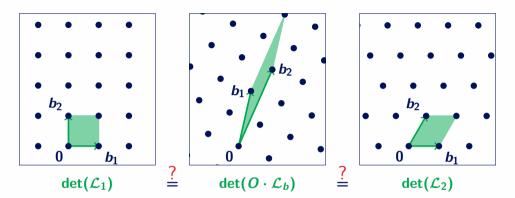


Totally real

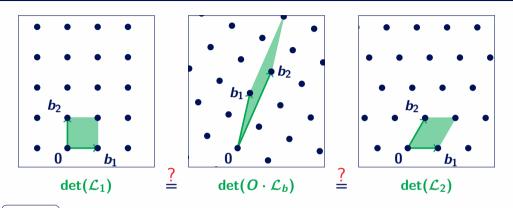
Totally imaginary


Cryptography is a trade-off between efficiency and security

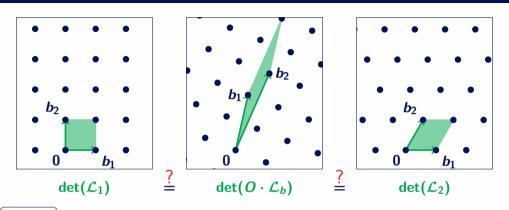
Module-LIP: replace $\mathcal{L} = B \cdot \mathbb{Z}^n$ by $\mathcal{L} = B \cdot O_K^r$ for ring of integers O_K .



Cryptography is a trade-off between efficiency and security


Module-LIP: replace $\mathcal{L} = B \cdot \mathbb{Z}^n$ by $\mathcal{L} = B \cdot O_K^r$ for ring of integers O_K .

Invariants


Invariants

If $det(\mathcal{L}_1) \neq det(\mathcal{L}_2)$, then Δ LIP can be solved efficiently.

Lemma:

Invariants

If $\det(\mathcal{L}_1) \neq \det(\mathcal{L}_2)$, then Δ LIP can be solved efficiently.

_emma:

Conjecture [DvW22]: Genus is the strongest efficiently computable invariant.

Genus Invariant

[BDG23] SIS lattices concentrate in only two genera.

[vW24] Random lattices in a genus behave like general random lattices.

 \Rightarrow any genus contains dense and smooth lattices \Rightarrow tighter security proofs

Genus Invariant

[BDG23] SIS lattices concentrate in only two genera.

[vW24] Random lattices in a genus behave like general random lattices.

 \Rightarrow any genus contains dense and smooth lattices \Rightarrow tighter security proofs

Module structure + Genus?

[LLM24] Spinor genus stronger when rank r = 2 and totally real.

 $[vG25] > 2^{1050}$ module lattices have the same genus as HAWK.

 $[M25] > 2^{850}$ module lattices have the same special genus as HAWK.

Genus Invariant

[BDG23] SIS lattices concentrate in only two genera.

[vW24] Random lattices in a genus behave like general random lattices.

 \Rightarrow any genus contains dense and smooth lattices \Rightarrow tighter security proofs

Module structure + Genus?

[LLM24] Spinor genus stronger when rank r = 2 and totally real.

 $[vG25] > 2^{1050}$ module lattices have the same genus as HAWK.

 $[M25] > 2^{850}$ module lattices have the same special genus as HAWK.

Conclusion: invariants do not seem to affect security.

KEM&PKEs

 \mathbb{Z}^n or $\mathsf{BW}_n + \Delta \mathsf{LIP}$ [ARLW24,CBZIPC24]

KEM&PKEs

 \mathbb{Z}^{n} or $\mathsf{BW}_{n} + \Delta \mathsf{LIP}$

[ARLW24,CBZIPC24]

Various Commitment Schemes

LIP (group action)

[JWLLGPW25,LJPW25]

KEM&PKEs

 $\mathbb{Z}^{\it n}$ or ${\sf BW}_{\it n}+{f \Delta}{\sf LIP}$

[ARLW24,CBZIPC24]

Various Commitment Schemes

LIP (group action)

[JWLLGPW25,LJPW25]

Unbounded Updatable Encryption

 \triangle PCE [ABL25] or \triangle LIP (WIP)

KEM&PKEs

 \mathbb{Z}^{n} or $\mathsf{BW}_{n} + \Delta \mathsf{LIP}$

[ARLW24,CBZIPC24]

Various Commitment Schemes

LIP (group action)

[JWLLGPW25,LJPW25]

Unbounded Updatable Encryption

△PCE [ABL25] or △LIP (WIP)

Fully Homomorphic Encryption

∆LIP [BMM25,LR**vW**25]

KEM&PKEs

 \mathbb{Z}^{n} or $\mathsf{BW}_{n} + \Delta \mathsf{LIP}$

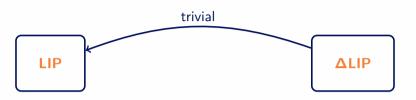
[ARLW24,CBZIPC24]

Various Commitment Schemes

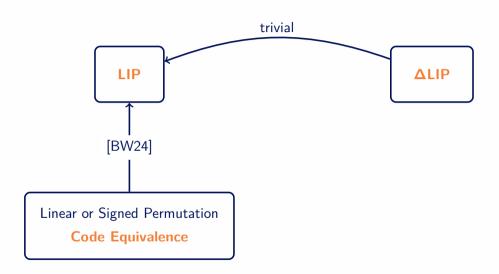
LIP (group action)

[JWLLGPW25,LJPW25]

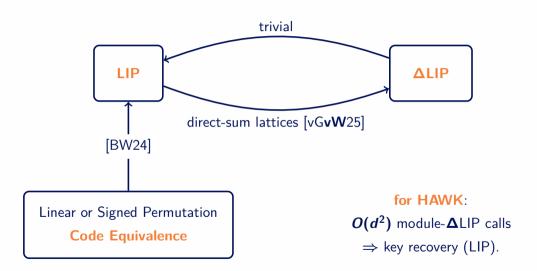
Unbounded Updatable Encryption


△PCE [ABL25] or △LIP (WIP)

Fully Homomorphic Encryption


△LIP [BMM25,LR**vW**25]

Allows for Advanced Cryptographic Constructions


Reductions

Reductions

Reductions

 $LIP+\mathbb{Z}^n$ is enough to match and improve on LWE and NTRU.

 $LIP+\mathbb{Z}^n$ is enough to match and improve on LWE and NTRU.

Better lattices ⇒ smaller keys and ciphertexts

 $LIP+\mathbb{Z}^n$ is enough to match and improve on LWE and NTRU.

Better lattices ⇒ smaller keys and ciphertexts

Reductions: WC \rightarrow AC within genus? LIP \leftrightarrow \triangle LIP?

 $LIP+\mathbb{Z}^n$ is enough to match and improve on LWE and NTRU.

Better lattices \Rightarrow smaller keys and ciphertexts

Reductions: WC \rightarrow AC within genus? LIP \leftrightarrow \triangle LIP?

Cryptanalysis: module-LIP & remarkable lattices

 $LIP+\mathbb{Z}^n$ is enough to match and improve on LWE and NTRU.

Better lattices ⇒ smaller keys and ciphertexts

Reductions: WC \rightarrow AC within genus? LIP \leftrightarrow \triangle LIP?

Cryptanalysis: module-LIP & remarkable lattices

Thank you!

Bibliography (1/3)

```
[ABL25] Hollow LWE: A New Spin: Unbounded Updatable Encryption from LWE and PCE
```

[APMvW25] cryptanalysis of rank-2 module-LIP: a single real embedding is all it takes

[ARLW24] Public-key encryption from the lattice isomorphism problem

[HAWK23] HAWK https://hawk-sign.info/

[BDG23] Genus distribution of random q-ary lattices

[BGPSD23] Just How Hard Are Rotations of \mathbb{Z}^n ? Algorithms and Cryptography with the Simplest Lattice

[BMM25] Fully-Homomorphic Encryption from Lattice Isomorphism

[BN24] Improved provable reduction of NTRU and hypercubic lattices

[BW25] Relating code equivalence to other isomorphism problems

[CBZIPC24] A concrete LIP-based KEM with simple lattices

Bibliography (2/3)

[CM25] Ideally HAWKward: How Not to Break Module-LIP

[CMEPMPW25] A reduction from Hawk to the principal ideal problem in a quaternion algebra

[D23] Provable lattice reduction of with blocksize n/2

[DG23] Hull attacks on the lattice isomorphism problem

[DPPvW22] Hawk: Module LIP Makes Lattice Signatures Fast, Compact and Simple

[DvW22] On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography

[FH23] On the Quantum Security of HAWK

[JWLLGPW25] Re-randomize and extract: A novel commitment construction framework based on group actions

[LJPW24] Cryptanalysis of rank-2 module-LIP with symplectic automorphisms

Bibliography (3/3)

```
[LJPW25] Commitment Schemes Based on Module-LIP
    [LLM24] On the spinor genus and the distinguishing lattice isomorphism problem
  [LRvW25] Beyond LWE: a Lattice Framework for Homomorphic Encryption
      [M25] Special Genera of Hermitian Lattices and Applications to HAWK
[MPMPW24] Cryptanalysis of rank-2 module-lip in totally real number fields
      [vG25] A note on the genus of the HAWK lattice
    [vGP25] HAWK: Having Automorphisms Weakens Kev
   [vGvW25] A search to distinguish reduction for the isomorphism problem on direct
             sum lattices
     [vW24] Dense and smooth lattices in any genus
```