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• Only solved in dimensions 2, 3, 8 and 24...
• Dimension 3 only in 1998 by a computational proof (Thomas Hales)
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The Lattice Packing Problem in dimension 9

• dim ≤ 8: theoretical proofs based on (H)KZ reduction.

• Idea: reduction theory gives an upper bound that is attained
• Problem dim. 9: conjectured best packing Λ9 is not that good (relatively)
• Best theoretical bounds are far off: current techniques do not seem sufficient.

What about a computational approach?

For any fixed dimension d ≥ 1, there exists an algorithm that runs in finite time
and determines the best lattice packing.

Theorem: Voronoi’s algorithm (1908)

• This work: successfully completing Voronoi’s algorithm in dimension 9.
• Corollary: the laminated lattice Λ9 is the unique densest lattice packing.
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Solution space

▶ Cone of positive definite matrices

Sd
<0 ⊂ Sd ⊂ Rd×d .

dim(Sd) = 1
2d(d + 1) =: n

▶ inner product: (to show these pictures)

⟨A, B⟩ := Tr(AtB) =
∑
i ,j

AijBij

▶ Q ∈ Sd defines a quadratic form by

Q[x] := xtQx = ⟨Q, xxt⟩ ∀x ∈ Rd
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• Lattice L = BZd =⇒ PQF Q = BtB ∈ Sd
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2 λ1(Q)1/2

λ(Q) := min
x∈Zd \{0}

Q[x] = min
y∈L\{0}

∥y∥2

Min Q := {x ∈ Zd : Q[x] = λ(Q)}

det(Q)1/2∼ λ(Q)d/2
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>0.

det(Q)1/2∼ λ(Q)d/2

• Hermite invariant:

γ(Q) =
λ(Q)

(detQ)1/d ∼ density(L)2/d

• Lattice packing problem ⇔ determine Hermite’s constant:

γd := sup
Q∈Sd

>0

γ(Q)
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Ryshkov Polyhedra

• For λ > 0 we define the Ryshkov Polyhedra

Pλ = {Q ∈ Sd
>0 : λ(Q) ≥ λ}

• We have
γd =

λ

inf
Q∈Pλ

det(Q)1/d

• Minkowski: det(Q)1/d is (strictly) concave on Sd
>0

=⇒ Local optima at vertices of Pλ. (uses that Pλ is locally finite)
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Perfect forms

• Q is perfect ⇔ Q is a vertex of Pλ(Q).
⇔ Q is fully determined by Min Q and λ1(Q).

• Facets adjacent to Q ↔ ±x ∈ Min Q
=⇒ |Min Q| ≥ 2n = d(d + 1)

• Voronoi’s algorithm: enumerate all perfect forms
(up to equivalence/similarity)
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Equivalence and similarity

• B and BU generate the same lattice for U ∈ GLd(Z).

• B and OBU generate isomorphic lattices for O ∈ Od(R). (same density)

• Arithmetically equivalence: ∃U ∈ GLd(Z) s.t. Q′ = UtQU.
• Similarity: Arithmetical equivalence up to positive scaling.

Up to similarity there are only a finite number of perfect forms in each dimension
Theorem: Voronoi (1908)

• Automorphism group Aut(Q) = {U ∈ GLd(Z) : UtQU = Q}.
• We have Min UtQU = U−1 · Min Q. (GLd(Z) acts on Pλ)
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Number of perfect forms

• pd := number of non-similar d -dimensional perfect forms.

In theory..

pd < eO(d4 log(d)) (C. Soulé, 1998)

eΩ(d) < pd < eO(d3 log(d)) (R. Bacher, 2017)

pd < eO(d2 log(d))

Theorem: vW, 2020

In practice..

d # pd
2 1 (Lagrange, 1773)
3 1 (Gauss, 1840)
4 2 (Korkine & Zolotarev, 1877)
5 3 (Korkine & Zolotarev, 1877)
6 7 (Barnes, 1957)
7 33 (Jaquet, 1993)
8 10916 (DSV, 2005)
9 ≥ 500.000 (DSV, 2005)

≥ 23.000.000 (vW, 2018)

Many more, to be continued...
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Voronoi’s Algorithm

• Voronoi’s Algorithm finds all d -dimensional perfect forms.

1. Start at a single vertex of P1.
2. Determine all neighbouring perfect forms.
3. Keep those that are new.
4. Repeat for each perfect form.
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Canonical functions

• Group G acting on a set X , orbit equality determines an equivalence relation on X .
(x ∼ y ⇔ Orbit(G, x) = Orbit(G, y))

• Problem: given S ⊂ X , determine all orbit equivalence classes under the action G.
• Naive approach: up to O(|S|2) orbit equivalence checks.
• |S| can be of order 109 in our work.

We call Θ : X → X a canonical function if Θ(x) ∼ x, and

x ∼ y ⇔ Θ(x) = Θ(y) for all x, y ∈ X.

Definition: canonical function

• |S| canonical function evaluations, keep unique ones in O(|S|) using hashmap.
• Used for: PQF, face and polyhedral equivalence.
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Example: Arithmetical Equivalence

• Arithmetical equivalence: ∃U ∈ GLd(Z) s.t. Q′ = UtQU. (G = GLd(Z), X = Sd
>0)

• Gives an isometry: U · MinQ′ = MinQ. (w.r.t. Q′ and Q respectively)
• If spanZ(MinQ) = Zd , then reverse implication is also true. (assume for now)
• Complete graph GQ with vertices Min Q, and weight xtQy on each edge (x, y).
• Then

Q ∼ Q′ ⇔ GQ ∼= GQ′ (graph isomorphism)

• Construct a canonical form using canonical graph labeling algorithms.
• With more improvements: ±0.3ms per perfect form in dimension 9.
• Details: A canonical form for positive definite matrices. [ANTS 2020, DSHVvW ]
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Dual Description Problem

• A (pointed) polyhedral cone C ⊂ Rn can either be given by facet inequalities or
by extreme rays.

• Dual Description problem: facets ⇔ extreme rays.
• The two directions are equivalent by duality.
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Too many neighbours

• Let P(Q) be the local pointed cone at Q.

• P(QE8): 120 facets in 36 dimensional space: 25.075.566.937.584 extreme rays...
• Many rays point to equivalent forms: Q + α1R1 ∼ Q + α2R2
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Local symmetry

• AutQ induces linear symmetries on P(Q). (AutQ/{±} ⊂ Aut(P))

• For all U ∈ AutQ, R is a ray if and only if UtRU is a ray, and:

Q + R ∼ Ut(Q + R)U = Q + UtRU

Compute all orbits of extreme rays under some symmetry group G ⊂ Aut(P).
Problem: Dual description problem under symmetry

P(QE8) with 120 facets has 25.075.566.937.584 extreme rays, but ‘only’ 83.092
orbits under AutQE8 .

Theorem: Dutour, Schürmann, Vallentin, 2005

• Even harder: P(QΛ9) has 136 facets in a 45-dimensional space.
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Adjacency Decomposition Method

⇒

• Two k-dimensional faces F1, F2 are adjacent if dim(F1 ∩ F2) = k − 1.

• Enumerate adjacency graph up to equivalence (just like Voronoi’s algorithm!)
• {F2 : adjacent to F1} ↔ {facets H of F1} (H = F1 ∩ F2).
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Adjacency Decomposition Method

• Best explained in dual setting: C = cone([y1, . . . , ym} ⊂ Rn with G ⊂ Aut(C).

1. Find at least one facet F .
2. Determine facets H1, . . . , Hk of F , .i.e. ridges of C contained in F .
3. For all i

• compute facet Fi of C such that Hi = F ∩ Fi .
• Keep Fi if G-inequivalent to all found facets.

4. Repeat (2) and (3) for each new facet.

Algorithm: Adjacency Decomposition Method

• Step (2) is again Dual Description problem but dimension n − 1 and only with
extreme rays contained in F .

• If still difficult, recurse: G ′ = Stab(G, F).
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Recursive Adjacency Decomposition Method

dim extreme rays
45

44

136

128 90 89 50 44

Found facets
(canonical image)

Direct computation
(PPL, LRS, CDD)

43 81 72 43 71 43

Recurse

Saving Bank
(canonical polyhedra)

Early termination
criteria

Extra symmetries

Parallelization
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Lattice packing problem in dimension 9

8 years and ± 3 000 000 core hours later...

There are precisely 2 237 251 040 non-similar perfect forms in dimension 9.
Theorem: Main result

The Laminated lattice Λ9 is the unique densest lattice packing in dimension 9.
Corollary: Lattice Packing Problem in dimension 9

The Hermite constant in dimension 9 is γ9 = 2.

The set of possible kissing numbers |Min (L)|, for a lattice L ⊂ R9 of dimension 9,
is 2 · {1, . . . , 91, 99, 120, . . . , 129, 136}.

Theorem: Kissing numbers
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All perfect forms by their kissing number

|min(Q)|/2 # |min(Q)|/2 # |min(Q)|/2 #

45 1 353 947 672 61 2 244 77 1
46 471 756 975 62 1 713 78 1
47 267 588 732 63 641 79 2
48 84 473 357 64 634 80 12
49 37 278 163 65 236 81 3
50 13 324 560 66 203 82 4
51 5 299 974 67 172 84 2
52 2 009 292 68 74 85 2
53 903 943 69 44 88 1
54 366 796 70 42 90 2
55 155 182 71 26 91 1
56 78 919 72 21 99 1
57 31 113 73 7 129 1
58 17 207 74 3 136 1
59 8 231 75 4
60 4 820 76 6

99.9991% of
all forms
< 5% of
runtime.
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High incidence cases

For comparison: P(QE8) now takes 9 core hours (before a few month).

Table: Cost of dual description cases with more than 50k core hours. These cases account for
1.5 million of the total amount of 2 million core hours spent on dual description instances.

|min(Q)|/2 Core hours |linaut(P)| rays (orbits) |aut(Q)| neighbours (orbits)

136 59 277 660 602 880 64 001 686 10 321 920 1 038 153 863
84 75 467 12 288 171 496 157 384 1 514 557 045
99 84 197 589 824 137 739 671 18 432 1 842 205 495
90 85 349 73 728 185 824 962 2 304 2 058 568 310
74 95 784 128 333 146 387 16 1 257 559 244
80 97 118 7 680 108 828 919 480 764 775 430
81 181 570 1 296 254 734 260 2 592 254 734 260
80 219 437 128 772 745 513 256 772 745 513
82 245 030 432 680 747 757 864 680 747 757
76 355 554 24 1 549 616 491 48 1 549 616 491
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Hard to reach perfect forms

Q72,D9

Q45,A9

Q74,256

Q45,1440

Q90,κ9

Q45,7680 Q45,1536 Q45,2304 Q45,11520 Q45,161280

Q45,A5
9

Q136,Λ9

Q45,A2
9

Figure: Part of Voronoi graph showing all perfect forms that are only connected via
high-incidence perfect forms.

• All other forms are connected via forms with |Min Q| ≤ 2 · 58.
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Thank you!

Preprint:
https://arxiv.org/abs/2508.20719

Thank you!

https://arxiv.org/abs/2508.20719
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Kissing numbers

45 129 136 99

44 128 90 89 89 87 8584

43 127 8983 88 88 86 84

...

36

...

120 ∼= Vor(E8)

∼= Vor(E8)+simplex

Partial face lattice:
• all facets: |F | ≥ 84 (dim= 44)
• all faces: |F | ≥ 92
• other relevant subfaces.
up to combinatorial equivalence



25 / 23

Canonical functions - Examples

Well researched area. Babai: canonical function in quasi-polynomial time.
Important: Many practically efficient canonical functions and libraries.

Graph Isomorphism: X = {n-vertex graphs G = (V , E)}, G = Sym(n).

Difficulty: infinite size orbits. Idea: G also acts on finite set Min (Q)

“A canonical form for positive definite matrices” [DSHVvW20]. → GI

PQF equivalence: X = Sd
>0(Q), G = GLd(Z), Q ◦ U := UtQU

“Computing symmetry groups of polyhedra” [BDSPRS14] → GI
Polyhedral Cone: X = {{v1, . . . , vm} ⊂ Rn}, G = GLn(R)

Permutation group acting on sets: “Minimal and Canonical images” [JJPW19]
Face equivalence: X = {faces of P}, G ⊂ Aut(P).
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Face equivalence

• Each face can be described by the set of rays F ⊂ [m] contained in it.
• Polyhedral symmetry group can be described as a permutation group G ⊂ Symm.
• X = {F ⊂ [m] : F is a face of P}, σ ◦ F = σ(F) = {σ(x) : x ∈ F}.
• Define total ordering ≼ on P([m]), then

θm(F) = min
≼

(Orb(G, F))

is canonical. Use stabilizer chain to calculate θm(F) without full enumeration.
• (Minimal and Canonical images, JJPW, 2017): dynamical ordering tailored for each

orbit. Constructed in a canonical way during the algorithm.
• Up to multiple orders of magnitude faster. (1 min. vs 2 ms in GAP)
• Mathieu ported the GAP routines and the package to C++: even faster.


