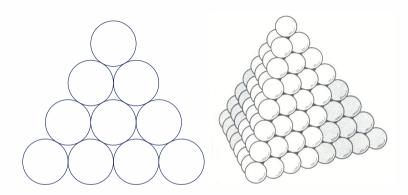
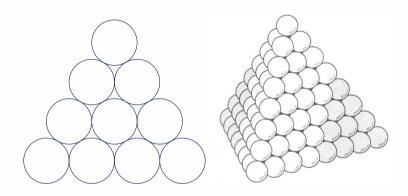
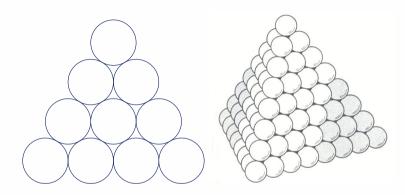
The lattice packing problem in dimension 9 by Voronoi's algorithm

Mathieu Dutour Sikirić & Wessel van Woerden (PQShield).

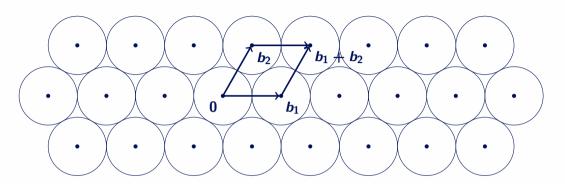


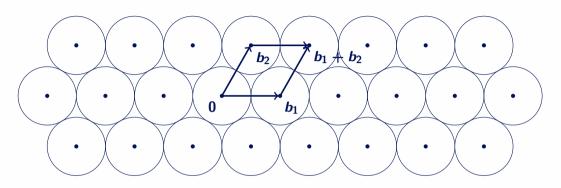


• Only solved in dimensions 2, 3, 8 and 24...

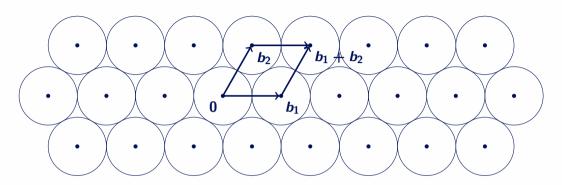


- Only solved in dimensions 2, 3, 8 and 24...
- Dimension 3 only in 1998 by a computational proof (Thomas Hales)

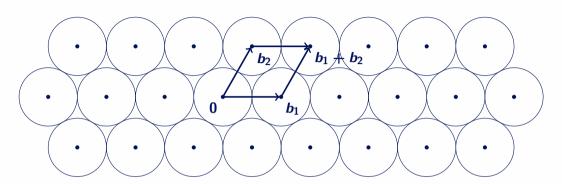




• Solved in dimensions $1, 2, \ldots, 8$ and 24.



• Solved in dimensions $1, 2, \dots, 8$ and 24.



• Solved in dimensions $1, 2, \dots, 8$ and 24.

 $\geq\!90$ years ago

• What about dimension **9**?

• $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained
- Problem dim. 9: conjectured best packing Λ_9 is not that good (relatively)

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained
- Problem dim. 9: conjectured best packing Λ_9 is not that good (relatively)
- Best theoretical bounds are far off: current techniques do not seem sufficient.

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained
- Problem dim. 9: conjectured best packing Λ_9 is not that good (relatively)
- Best theoretical bounds are far off: current techniques do not seem sufficient.

What about a computational approach?

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained
- Problem dim. 9: conjectured best packing Λ_9 is not that good (relatively)
- Best theoretical bounds are far off: current techniques do not seem sufficient.

What about a computational approach?

Theorem: Voronoi's algorithm (1908) |--

For any fixed dimension $d \geq 1$, there exists an algorithm that runs in finite time and determines the best lattice packing.

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained
- Problem dim. 9: conjectured best packing Λ_9 is not that good (relatively)
- Best theoretical bounds are far off: current techniques do not seem sufficient.

What about a computational approach?

Theorem: Voronoi's algorithm (1908) --

For any fixed dimension $d \geq 1$, there exists an algorithm that runs in finite time and determines the best lattice packing.

This work: successfully completing Voronoi's algorithm in dimension 9.

- $\dim \leq 8$: theoretical proofs based on (H)KZ reduction.
- Idea: reduction theory gives an upper bound that is attained
- Problem dim. 9: conjectured best packing Λ_9 is not that good (relatively)
- Best theoretical bounds are far off: current techniques do not seem sufficient.

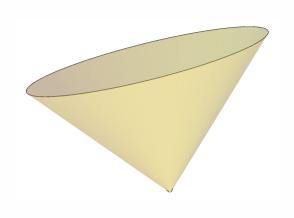
What about a computational approach?

```
Theorem: Voronoi's algorithm (1908) | --
```

For any fixed dimension $d \geq 1$, there exists an algorithm that runs in finite time and determines the best lattice packing.

- This work: successfully completing Voronoi's algorithm in dimension 9.
- Corollary: the laminated lattice Λ_0 is the unique densest lattice packing.

Solution space



► Cone of positive definite matrices

$$\mathcal{S}^d_{\leq 0} \subset \mathcal{S}^d \subset \mathbb{R}^{d \times d}$$
.

$$\dim(\mathcal{S}^d) = \frac{1}{2}d(d+1) =: n$$

▶ inner product: (to show these pictures)

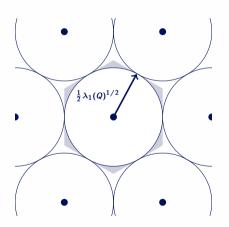
$$\langle A,B \rangle := \operatorname{Tr}(A^tB) = \sum_{i,j} A_{ij}B_{ij}$$

ullet $Q\in\mathcal{S}^d$ defines a quadratic form by

$$Q[x] := x^t Q x = \langle Q, x x^t \rangle \ \forall x \in \mathbb{R}^d$$

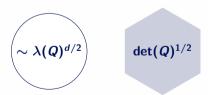
• Lattice $L = B\mathbb{Z}^d \implies \mathsf{PQF} \ Q = B^t B \in S^d_{>0}$.

• Lattice $L = B\mathbb{Z}^d \implies \mathsf{PQF} \ Q = B^t B \in S^d_{>0}$.

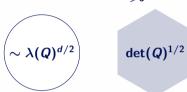


$$\lambda(Q) := \min_{\mathbf{x} \in \mathbb{Z}^d \setminus \{0\}} Q[\mathbf{x}] = \min_{\mathbf{y} \in L \setminus \{0\}} \|\mathbf{y}\|^2$$

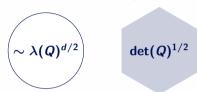
$$\mathsf{Min}\ Q := \{x \in \mathbb{Z}^d : Q[x] = \lambda(Q)\}$$



• Lattice $L = B\mathbb{Z}^d \implies \mathsf{PQF}\ Q = B^tB \in S^d_{>0}$.



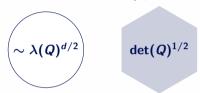
ullet Lattice ${\it L}={\it B}\mathbb{Z}^d \implies {\it PQF} \; {\it Q}={\it B}^t{\it B}\in {\it S}^d_{>0}.$



• Hermite invariant:

$$\gamma(Q) = rac{\lambda(Q)}{(\det Q)^{1/d}} \sim \operatorname{density}(L)^{2/d}$$

ullet Lattice $oldsymbol{L} = oldsymbol{B} \mathbb{Z}^d \implies \mathsf{PQF} \ oldsymbol{Q} = oldsymbol{B}^t oldsymbol{B} \in \mathcal{S}^d_{>0}.$



• Hermite invariant:

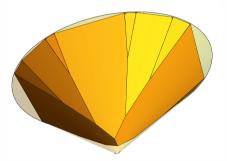
$$\gamma(Q) = rac{\lambda(Q)}{(\det Q)^{1/d}} \sim \operatorname{density}(L)^{2/d}$$

• Lattice packing problem ⇔ determine Hermite's constant:

$$\gamma_d := \sup_{\boldsymbol{Q} \in \mathcal{S}_{>0}^d} \gamma(\boldsymbol{Q})$$

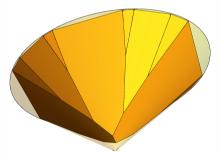
ullet For $\lambda>0$ we define the Ryshkov Polyhedra

$$\mathcal{P}_{\lambda} = \{ Q \in \mathcal{S}^d_{>0} : \lambda(Q) \geq \lambda \}$$



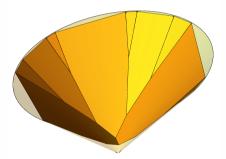
ullet For $\lambda>0$ we define the Ryshkov Polyhedra

$$\mathcal{P}_{\lambda} = \bigcap_{\mathbf{x} \in \mathbb{Z}^d \setminus \{0\}} \{ \mathbf{Q} \in \mathcal{S}^d : \langle \mathbf{Q}, \mathbf{x} \mathbf{x}^t \rangle \geq \lambda \} \subset \mathcal{S}^d_{>0}$$



ullet For $\lambda>0$ we define the Ryshkov Polyhedra

$$\mathcal{P}_{\lambda} = \bigcap_{\mathbf{x} \in \mathbb{Z}^d \setminus \{0\}} \{ \mathbf{Q} \in \mathcal{S}^d : \langle \mathbf{Q}, \mathbf{x} \mathbf{x}^t \rangle \geq \lambda \} \subset \mathcal{S}^d_{>0}$$



- Each facet corresponds to some primitive $\pm x \in \mathbb{Z}^d$.
- Locally finite

ullet For $\lambda>0$ we define the Ryshkov Polyhedra

$$\mathcal{P}_{\lambda} = \{ Q \in \mathcal{S}^{d}_{>0} : \lambda(Q) \ge \lambda \}$$

We have

$$\gamma_d = rac{\lambda}{\displaystyle\inf_{Q\in\mathcal{P}_\lambda} \det(Q)^{1/d}}$$

ullet For $\lambda>0$ we define the Ryshkov Polyhedra

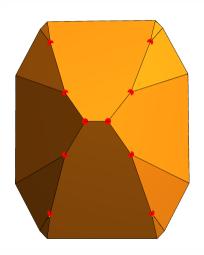
$$\mathcal{P}_{\lambda} = \{ Q \in \mathcal{S}^d_{>0} : \lambda(Q) \ge \lambda \}$$

We have

$$\gamma_d = rac{\lambda}{\displaystyle\inf_{Q \in \mathcal{P}_{\lambda}} \det(Q)^{1/d}}$$

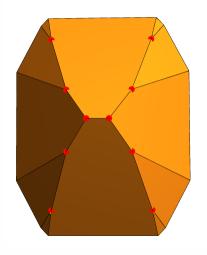
• Minkowski: $\det(Q)^{1/d}$ is (strictly) concave on $\mathcal{S}^d_{>0}$ \Longrightarrow Local optima at vertices of \mathcal{P}_{λ} . (uses that \mathcal{P}_{λ} is locally finite)

Perfect forms



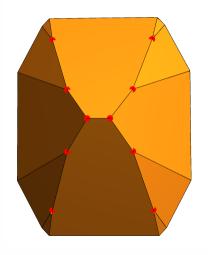
• Q is perfect $\Leftrightarrow Q$ is a vertex of $\mathcal{P}_{\lambda(Q)}$. $\Leftrightarrow Q$ is fully determined by Min Q and $\lambda_1(Q)$.

Perfect forms



- Q is perfect $\Leftrightarrow Q$ is a vertex of $\mathcal{P}_{\lambda(Q)}$. $\Leftrightarrow Q$ is fully determined by Min Q and $\lambda_1(Q)$.
- Facets adjacent to $Q \leftrightarrow \pm x \in \text{Min } Q$ $\implies |\text{Min } Q| > 2n = d(d+1)$

Perfect forms



- Q is perfect $\Leftrightarrow Q$ is a vertex of $\mathcal{P}_{\lambda(Q)}$. $\Leftrightarrow Q$ is fully determined by Min Q and $\lambda_1(Q)$.
- Facets adjacent to $Q \leftrightarrow \pm x \in \text{Min } Q$ $\implies |\text{Min } Q| > 2n = d(d+1)$
- Voronoi's algorithm: enumerate all perfect forms (up to equivalence/similarity)

• **B** and **BU** generate the same lattice for $U \in GL_d(\mathbb{Z})$.

- **B** and **BU** generate the same lattice for $U \in GL_d(\mathbb{Z})$.
- **B** and **OBU** generate isomorphic lattices for $O \in \mathbb{O}_d(\mathbb{R})$. (same density)

- B and BU generate the same lattice for $U \in GL_d(\mathbb{Z})$.
- **B** and **OBU** generate isomorphic lattices for $O \in \mathbb{O}_d(\mathbb{R})$. (same density)
- Arithmetically equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$.

- B and BU generate the same lattice for $U \in GL_d(\mathbb{Z})$.
- B and OBU generate isomorphic lattices for $O \in \mathbb{O}_d(\mathbb{R})$. (same density)
- Arithmetically equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$.
- Similarity: Arithmetical equivalence up to positive scaling.

- B and BU generate the same lattice for $U \in \mathrm{GL}_d(\mathbb{Z})$.
- B and OBU generate isomorphic lattices for $O \in \mathbb{O}_d(\mathbb{R})$. (same density)
- Arithmetically equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$.
- Similarity: Arithmetical equivalence up to positive scaling.

```
Theorem: Voronoi (1908) -----

Up to similarity there are only a finite number of perfect forms in each dimension
```

Equivalence and similarity

- B and BU generate the same lattice for $U \in \mathrm{GL}_d(\mathbb{Z})$.
- B and OBU generate isomorphic lattices for $O \in \mathbb{O}_d(\mathbb{R})$. (same density)
- Arithmetically equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$.
- Similarity: Arithmetical equivalence up to positive scaling.

```
Theorem: Voronoi (1908) -----
```

Up to similarity there are only a finite number of perfect forms in each dimension ${\sf S}$

• Automorphism group $\operatorname{Aut}(Q) = \{U \in \operatorname{GL}_d(\mathbb{Z}) : U^t QU = Q\}.$

Equivalence and similarity

- B and BU generate the same lattice for $U \in \mathrm{GL}_d(\mathbb{Z})$.
- B and OBU generate isomorphic lattices for $O \in \mathbb{O}_d(\mathbb{R})$. (same density)
- Arithmetically equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$.
- Similarity: Arithmetical equivalence up to positive scaling.

```
Theorem: Voronoi (1908) -----
```

Up to similarity there are only a finite number of perfect forms in each dimension $% \left\{ 1,2,...,n\right\}$

- Automorphism group $\operatorname{Aut}(Q) = \{U \in \operatorname{GL}_d(\mathbb{Z}) : U^t QU = Q\}.$
- We have Min $U^tQU = U^{-1}$ · Min Q. $(GL_d(\mathbb{Z}) \text{ acts on } \mathcal{P}_{\lambda})$

• $p_d :=$ number of non-similar d-dimensional perfect forms.

• $p_d :=$ number of non-similar d-dimensional perfect forms.

In theory..

$$p_d < e^{O(d^4\log(d))}$$
 (C. Soulé, 1998) $e^{\Omega(d)} < p_d < e^{O(d^3\log(d))}$ (R. Bacher, 2017)

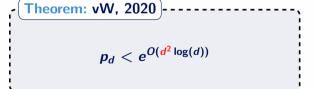
• $p_d :=$ number of non-similar d-dimensional perfect forms.

In theory..

• $p_d :=$ number of non-similar **d**-dimensional perfect forms.

In theory..

$$p_d < e^{O(d^4\log(d))}$$
 (C. Soulé, 1998) $e^{\Omega(d)} < p_d < e^{O(d^3\log(d))}$ (R. Bacher, 2017)



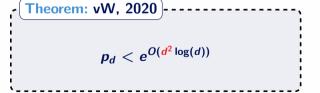
In practice..

d	$\# p_d$
2	1 (Lagrange, 1773)
3	1 (Gauss, 1840)
4	2 (Korkine & Zolotarev, 1877)
5	3 (Korkine & Zolotarev, 1877)
6	7 (Barnes, 1957)
7	33 (Jaquet, 1993)
8	10916 (DSV, 2005)
9	≥ 500 000 (DSV, 2005)
	$\geq 23.000.000 (vW, 2018)$
	, — ,

• $p_d :=$ number of non-similar **d**-dimensional perfect forms.

In theory..

$$p_d < e^{O(d^4\log(d))}$$
 (C. Soulé, 1998) $e^{\Omega(d)} < p_d < e^{O(d^3\log(d))}$ (R. Bacher, 2017)

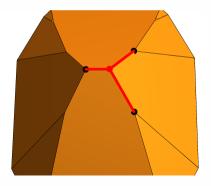


In practice..

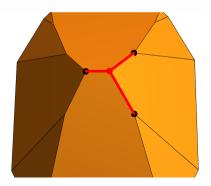
d	# p _d
2	1 (Lagrange, 1773)
3	1 (Gauss, 1840)
4	2 (Korkine & Zolotarev, 1877)
5	3 (Korkine & Zolotarev, 1877)
6	7 (Barnes, 1957)
7	33 (Jaquet, 1993)
8	10916 (DSV, 2005)
9	≥ 500.000 (DSV, 2005)
	\geq 23.000.000 (vW , 2018)
	Many more, to be continued

Voronoi's Algorithm Challenges & Solutions

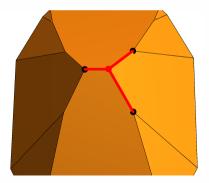
• Voronoi's Algorithm finds all **d**-dimensional perfect forms.



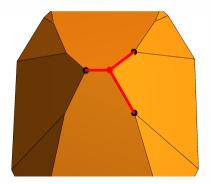
- Voronoi's Algorithm finds all **d**-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .



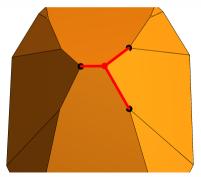
- Voronoi's Algorithm finds all *d*-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .
- 2. Determine all neighbouring perfect forms.



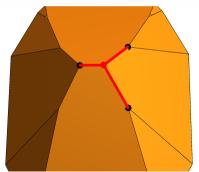
- Voronoi's Algorithm finds all *d*-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .
- 2. Determine all neighbouring perfect forms.
- 3. Keep those that are new.



- Voronoi's Algorithm finds all *d*-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .
- 2. Determine all neighbouring perfect forms.
- 3. Keep those that are new.
- 4. Repeat for each perfect form.



- Voronoi's Algorithm finds all *d*-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .
- 2. Determine all neighbouring perfect forms.
- 3. Keep those that are new.
- 4. Repeat for each perfect form.

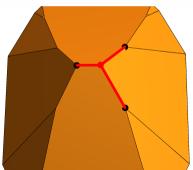


Dual Description Problem

- Voronoi's Algorithm finds all *d*-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .
- 2. Determine all neighbouring perfect forms.
- 3. Keep those that are new.
- 4. Repeat for each perfect form.

Testing Equivalence

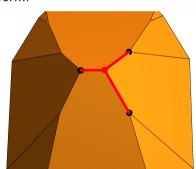
Dual Description Problem



- Voronoi's Algorithm finds all **d**-dimensional perfect forms.
- 1. Start at a single vertex of \mathcal{P}_1 .
- 2. Determine all neighbouring perfect forms. Testing
- 3. Keep those that are new.

4. Repeat for each perfect form.

#Perfect forms



Equivalence

Dual Description Problem

ullet Group $oldsymbol{G}$ acting on a set $oldsymbol{X}$, orbit equality determines an equivalence relation on $oldsymbol{X}$.

```
(x \sim y \Leftrightarrow \text{Orbit}(G, x) = \text{Orbit}(G, y))
```

- Group G acting on a set X, orbit equality determines an equivalence relation on X. $(x \sim y \Leftrightarrow \operatorname{Orbit}(G, x) = \operatorname{Orbit}(G, y))$
- Problem: given $S \subset X$, determine all orbit equivalence classes under the action G.

- Group G acting on a set X, orbit equality determines an equivalence relation on X. $(x \sim y \Leftrightarrow \operatorname{Orbit}(G, x) = \operatorname{Orbit}(G, y))$
- Problem: given $S \subset X$, determine all orbit equivalence classes under the action G.
- Naive approach: up to $O(|S|^2)$ orbit equivalence checks.

- Group G acting on a set X, orbit equality determines an equivalence relation on X. $(x \sim y \Leftrightarrow \operatorname{Orbit}(G, x) = \operatorname{Orbit}(G, y))$
- Problem: given $S \subset X$, determine all orbit equivalence classes under the action G.
- Naive approach: up to $O(|S|^2)$ orbit equivalence checks.
- |S| can be of order 10^9 in our work.

- Group G acting on a set X, orbit equality determines an equivalence relation on X. $(x \sim y \Leftrightarrow \operatorname{Orbit}(G, x) = \operatorname{Orbit}(G, y))$
- Problem: given $S \subset X$, determine all orbit equivalence classes under the action G.
- Naive approach: up to $O(|S|^2)$ orbit equivalence checks.
- |S| can be of order 10^9 in our work.

- Group G acting on a set X, orbit equality determines an equivalence relation on X. $(x \sim y \Leftrightarrow \operatorname{Orbit}(G, x) = \operatorname{Orbit}(G, y))$
- Problem: given $S \subset X$, determine all orbit equivalence classes under the action G.
- Naive approach: up to $O(|S|^2)$ orbit equivalence checks.
- |S| can be of order 10^9 in our work.

• |S| canonical function evaluations, keep unique ones in O(|S|) using hashmap.

- Group G acting on a set X, orbit equality determines an equivalence relation on X. $(x \sim y \Leftrightarrow \operatorname{Orbit}(G, x) = \operatorname{Orbit}(G, y))$
- Problem: given $S \subset X$, determine all orbit equivalence classes under the action G.
- Naive approach: up to $O(|S|^2)$ orbit equivalence checks.
- |S| can be of order 10^9 in our work.

```
Definition: canonical function We call \Theta: X \to X a canonical function if \Theta(x) \sim x, and x \sim y \Leftrightarrow \Theta(x) = \Theta(y) for all x, y \in X.
```

- |S| canonical function evaluations, keep unique ones in O(|S|) using hashmap.
- Used for: PQF, face and polyhedral equivalence.

 $\bullet \ \, \text{Arithmetical equivalence:} \ \, \exists \textbf{\textit{U}} \in \mathrm{GL}_{\textbf{\textit{d}}}(\mathbb{Z}) \, \, \text{s.t.} \, \, \textbf{\textit{Q'}} = \textbf{\textit{U}}^t \textbf{\textit{QU}}. \quad (\textit{\textit{G}} = \mathrm{GL}_d(\mathbb{Z}), \textit{\textit{X}} = \mathcal{S}_{>0}^d)$

- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = \mathcal{S}_{>0}^d)$
- Gives an isometry: $U \cdot \text{Min} Q' = \text{Min} Q$. (w.r.t. Q' and Q respectively)

- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = \mathcal{S}_{>0}^d)$
- Gives an isometry: $U \cdot MinQ' = MinQ$. (w.r.t. Q' and Q respectively)
- If $\operatorname{span}_{\mathbb{Z}}(\operatorname{Min} Q) = \mathbb{Z}^d$, then reverse implication is also true. (assume for now)

- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = S_{>0}^d)$
- Gives an isometry: $U \cdot MinQ' = MinQ$. (w.r.t. Q' and Q respectively)
- If $\operatorname{span}_{\mathbb{Z}}(\operatorname{Min} Q) = \mathbb{Z}^d$, then reverse implication is also true. (assume for now)
- Complete graph \mathcal{G}_Q with vertices Min Q, and weight x^tQy on each edge (x, y).

- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = \mathcal{S}_{>0}^d)$
- Gives an isometry: $U \cdot MinQ' = MinQ$. (w.r.t. Q' and Q respectively)
- If $\operatorname{span}_{\mathbb{Z}}(\operatorname{Min} Q) = \mathbb{Z}^d$, then reverse implication is also true. (assume for now)
- Complete graph \mathcal{G}_Q with vertices Min Q, and weight x^tQy on each edge (x, y).
- Then

$$Q \sim Q' \Leftrightarrow \mathcal{G}_Q \cong \mathcal{G}_{Q'}$$
 (graph isomorphism)

- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = S_{>0}^d)$
- Gives an isometry: $U \cdot MinQ' = MinQ$. (w.r.t. Q' and Q respectively)
- If $\operatorname{span}_{\mathbb{Z}}(\operatorname{Min} Q) = \mathbb{Z}^d$, then reverse implication is also true. (assume for now)
- Complete graph \mathcal{G}_Q with vertices Min Q, and weight x^tQy on each edge (x,y).
- Then

$$Q \sim Q' \Leftrightarrow {\mathcal G}_Q \cong {\mathcal G}_{Q'}$$
 (graph isomorphism)

• Construct a canonical form using canonical graph labeling algorithms.

- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = \mathcal{S}_{>0}^d)$
- Gives an isometry: $U \cdot MinQ' = MinQ$. (w.r.t. Q' and Q respectively)
- If $\operatorname{span}_{\mathbb{Z}}(\operatorname{Min} Q) = \mathbb{Z}^d$, then reverse implication is also true. (assume for now)
- Complete graph \mathcal{G}_Q with vertices Min Q, and weight x^tQy on each edge (x,y).
- Then

$$Q \sim Q' \Leftrightarrow {\mathcal G}_Q \cong {\mathcal G}_{Q'}$$
 (graph isomorphism)

- Construct a canonical form using canonical graph labeling algorithms.
- With more improvements: ± 0.3 ms per perfect form in dimension 9.

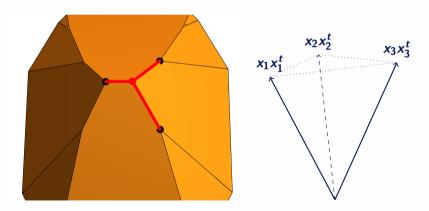
- Arithmetical equivalence: $\exists U \in GL_d(\mathbb{Z})$ s.t. $Q' = U^tQU$. $(G = GL_d(\mathbb{Z}), X = \mathcal{S}_{>0}^d)$
- Gives an isometry: $U \cdot Min Q' = Min Q$. (w.r.t. Q' and Q respectively)
- If $\operatorname{span}_{\mathbb{Z}}(\operatorname{Min} Q) = \mathbb{Z}^d$, then reverse implication is also true. (assume for now)
- Complete graph \mathcal{G}_Q with vertices Min Q, and weight x^tQy on each edge (x,y).
- Then

$$Q \sim Q' \Leftrightarrow {\mathcal G}_Q \cong {\mathcal G}_{Q'}$$
 (graph isomorphism)

- Construct a canonical form using canonical graph labeling algorithms.
- With more improvements: ± 0.3 ms per perfect form in dimension 9.
- Details: A canonical form for positive definite matrices. [ANTS 2020, DSHVvW]

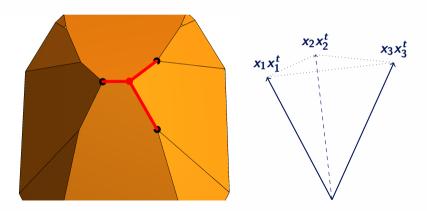
Dual Description Problem

• A (pointed) polyhedral cone $\mathcal{C} \subset \mathbb{R}^n$ can either be given by facet inequalities or by extreme rays.



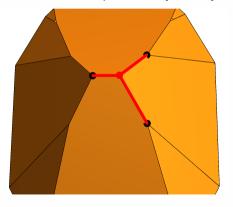
Dual Description Problem

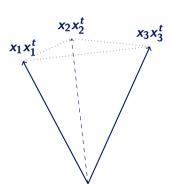
- A (pointed) polyhedral cone $\mathcal{C} \subset \mathbb{R}^n$ can either be given by facet inequalities or by extreme rays.
- Dual Description problem: facets ⇔ extreme rays.



Dual Description Problem

- A (pointed) polyhedral cone $\mathcal{C} \subset \mathbb{R}^n$ can either be given by facet inequalities or by extreme rays.
- Dual Description problem: facets ⇔ extreme rays.
- The two directions are equivalent by duality.





Too many neighbours

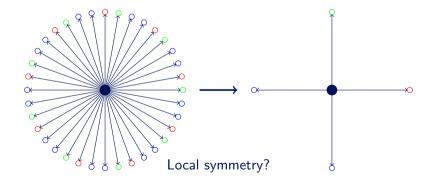
• Let $\mathcal{P}(Q)$ be the local pointed cone at Q.

Too many neighbours

- Let $\mathcal{P}(Q)$ be the local pointed cone at Q.
- $\mathcal{P}(Q_{E_8})$: 120 facets in 36 dimensional space: 25.075.566.937.584 extreme rays...

Too many neighbours

- Let $\mathcal{P}(Q)$ be the local pointed cone at Q.
- $\mathcal{P}(Q_{E_8})$: 120 facets in 36 dimensional space: 25.075.566.937.584 extreme rays...
- Many rays point to equivalent forms: $Q + \alpha_1 R_1 \sim Q + \alpha_2 R_2$



• Aut Q induces linear symmetries on $\mathcal{P}(Q)$. (Aut $Q/\{\pm\} \subset Aut(\mathcal{P})$)

- Aut $m{Q}$ induces linear symmetries on $m{\mathcal{P}}(m{Q})$. (Aut $m{Q}/\{\pm\}\subset \operatorname{Aut}(m{\mathcal{P}})$)
- For all $U \in Aut Q$, R is a ray if and only if U^tRU is a ray, and:

$$Q + R \sim U^t(Q + R)U = Q + U^tRU$$

- Aut $m{Q}$ induces linear symmetries on $m{\mathcal{P}}(m{Q})$. (Aut $m{Q}/\{\pm\}\subset \operatorname{Aut}(m{\mathcal{P}})$)
- ullet For all $oldsymbol{U} \in \operatorname{Aut} oldsymbol{Q}, \, oldsymbol{R}$ is a ray if and only if $oldsymbol{U^tRU}$ is a ray, and:

$$Q + R \sim U^t(Q + R)U = Q + U^tRU$$

Problem: Dual description problem under symmetry } -

Compute all orbits of extreme rays under some symmetry group $G \subset \operatorname{Aut}(\mathcal{P})$.

- Aut $m{Q}$ induces linear symmetries on $m{\mathcal{P}}(m{Q})$. (Aut $m{Q}/\{\pm\}\subset \operatorname{Aut}(m{\mathcal{P}})$)
- ullet For all $oldsymbol{U} \in \operatorname{Aut} oldsymbol{Q}$, $oldsymbol{R}$ is a ray if and only if $oldsymbol{U^t} oldsymbol{RU}$ is a ray, and:

$$Q + R \sim U^t(Q + R)U = Q + U^tRU$$

Problem: Dual description problem under symmetry

Compute all **orbits** of extreme rays under some symmetry group $G \subset \operatorname{Aut}(\mathcal{P})$.

Theorem: Dutour, Schürmann, Vallentin, 2005 ----

 $\mathcal{P}(Q_{E_8})$ with 120 facets has 25.075.566.937.584 extreme rays, but 'only' 83.092 orbits under $\text{Aut}\,Q_{E_8}$.

- Aut $m{Q}$ induces linear symmetries on $m{\mathcal{P}}(m{Q})$. (Aut $m{Q}/\{\pm\}\subset \operatorname{Aut}(m{\mathcal{P}})$)
- ullet For all $oldsymbol{U} \in \operatorname{Aut} oldsymbol{Q}$, $oldsymbol{R}$ is a ray if and only if $oldsymbol{U^t} oldsymbol{RU}$ is a ray, and:

$$Q + R \sim U^t(Q + R)U = Q + U^tRU$$

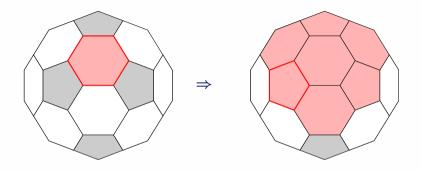
Problem: Dual description problem under symmetry } -

Compute all orbits of extreme rays under some symmetry group $G \subset \operatorname{Aut}(\mathcal{P})$.

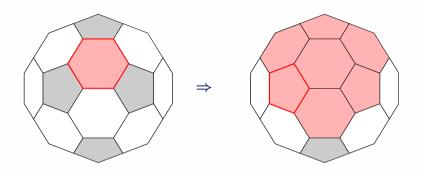
Theorem: Dutour, Schürmann, Vallentin, 2005

 $\mathcal{P}(\textit{Q}_{\textit{E}_8})$ with 120 facets has 25.075.566.937.584 extreme rays, but 'only' 83.092 orbits under $\text{Aut}\,\textit{Q}_{\textit{E}_8}.$

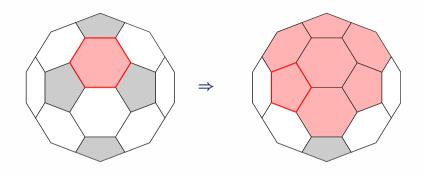
• Even harder: $\mathcal{P}(Q_{\Lambda_9})$ has 136 facets in a 45-dimensional space.



• Two k-dimensional faces F_1 , F_2 are adjacent if $\dim(F_1 \cap F_2) = k - 1$.



- Two **k**-dimensional faces F_1, F_2 are adjacent if $\dim(F_1 \cap F_2) = k 1$.
- Enumerate adjacency graph up to equivalence (just like Voronoi's algorithm!)



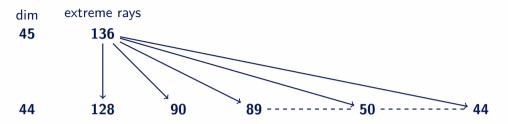
- Two **k**-dimensional faces F_1 , F_2 are adjacent if $\dim(F_1 \cap F_2) = k 1$.
- Enumerate adjacency graph up to equivalence (just like Voronoi's algorithm!)
- $\{F_2: \text{adjacent to } F_1\} \leftrightarrow \{\text{facets } H \text{ of } F_1\}$ $(H=F_1 \cap F_2).$

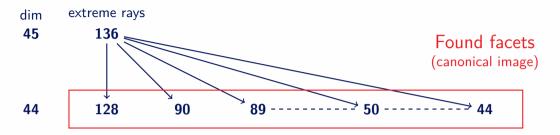
ullet Best explained in dual setting: $\mathcal{C} = \mathsf{cone}([y_1,\ldots,y_m] \subset \mathbb{R}^n \; \mathsf{with} \; \mathcal{G} \subset \mathsf{Aut}(\mathcal{C}).$

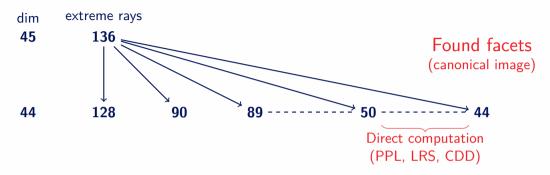
Algorithm: Adjacency Decomposition Method

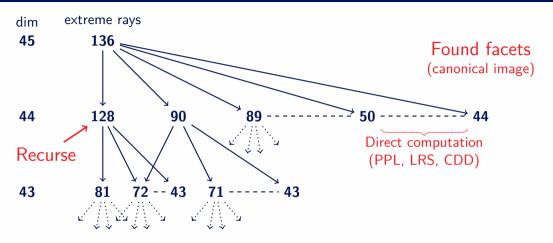
- 1. Find at least one facet F.
- 2. Determine facets H_1, \ldots, H_k of F, i.e. ridges of C contained in F.
- 3. For all *i*
 - compute facet F_i of C such that $H_i = F \cap F_i$.
 - Keep F_i if G-inequivalent to all found facets.
- 4. Repeat (2) and (3) for each new facet.

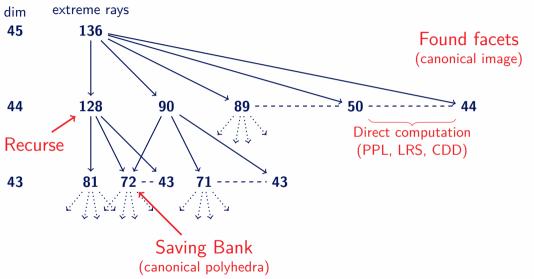
- Step (2) is again Dual Description problem but dimension n-1 and only with extreme rays contained in F.
- If still difficult, recurse: G' = Stab(G, F).

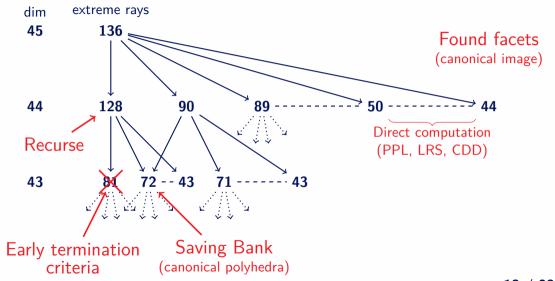


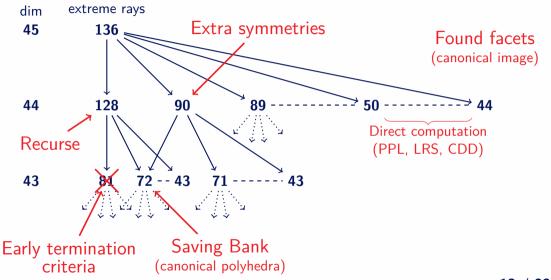


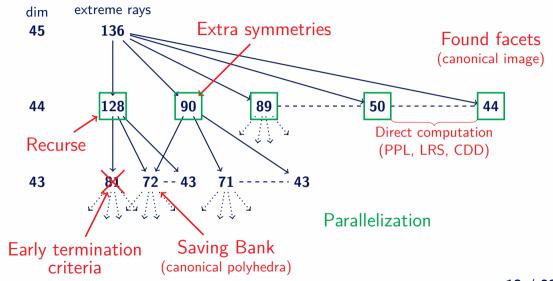


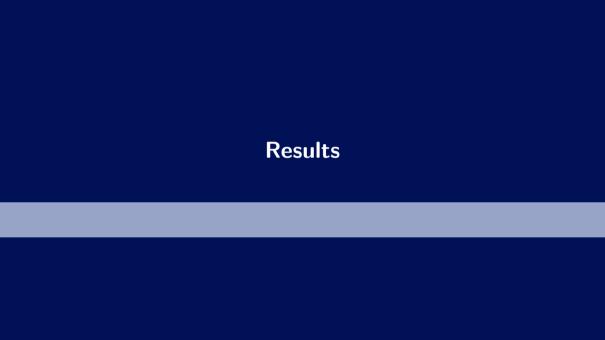












8 years and \pm **3** 000 000 core hours later...

8 years and \pm **3** 000 000 core hours later...

Theorem: Main result

There are precisely 2 237 251 040 non-similar perfect forms in dimension 9.

8 years and \pm 3 000 000 core hours later...

Theorem: Main result

There are precisely 2 237 251 040 non-similar perfect forms in dimension 9.

Corollary: Lattice Packing Problem in dimension 9

The Laminated lattice Λ_9 is the unique densest lattice packing in dimension 9.

8 years and \pm **3** 000 000 core hours later...

Theorem: Main result ---

There are precisely 2 237 251 040 non-similar perfect forms in dimension 9.

Corollary: Lattice Packing Problem in dimension $\mathbf{9}$

The Laminated lattice Λ_9 is the unique densest lattice packing in dimension 9.

The Hermite constant in dimension **9** is $\gamma_9 = 2$.

8 years and \pm **3** 000 000 core hours later...

(Theorem: Main result)-----

There are precisely $2\,237\,251\,040$ non-similar perfect forms in dimension 9.

Corollary: Lattice Packing Problem in dimension 9

The Laminated lattice Λ_9 is the unique densest lattice packing in dimension 9.

The Hermite constant in dimension 9 is $\gamma_9 = 2$.

Theorem: Kissing numbers

The set of possible kissing numbers |Min(L)|, for a lattice $L \subset \mathbb{R}^9$ of dimension 9, is $2 \cdot \{1, \ldots, 91, 99, 120, \ldots, 129, 136\}$.

All perfect forms by their kissing number

$ \min(Q) /2$	#	$ \min(Q) /2$	#	$ \min(Q) /2$	#
45	1 353 947 672	61	2 244	77	1
46	471 756 975	62	1713	78	1
47	267 588 732	63	641	79	2
48	84 473 357	64	634	80	12
49	37 278 163	65	236	81	3
50	13 324 560	66	203	82	4
51	5 299 974	67	172	84	2
52	2 009 292	68	74	85	2
53	903 943	69	44	88	1
54	366 796	70	42	90	2
55	155 182	71	26	91	1
56	78 919	72	21	99	1
57	31 113	73	7	129	1
58	17 207	74	3	136	1
59	8 231	75	4		
60	4 820	76	6		

All perfect forms by their kissing number

99.9991% of all forms
< 5% of runtime.

$ \min(Q) /2$	#	$ \min(Q) /2$	#	$ \min(Q) /2$	#
45	1 353 947 672	61	2 244	77	1
46	471 756 975	62	1713	78	1
47	267 588 732	63	641	79	2
48	84 473 357	64	634	80	12
49	37 278 163	65	236	81	3
50	13 324 560	66	203	82	4
51	5 299 974	67	172	84	2
52	2 009 292	68	74	85	2
53	903 943	69	44	88	1
54	366 796	70	42	90	2
55	155 182	71	26	91	1
56	78 919	72	21	99	1
57	31 113	73	7	129	1
58	17 207	74	3	136	1
59	8 231	75	4		
60	4820	76	6		

High incidence cases

For comparison: $\mathcal{P}(Q_{E_8})$ now takes 9 core hours (before a few month).

High incidence cases

For comparison: $\mathcal{P}(Q_{E_8})$ now takes 9 core hours (before a few month).

Table: Cost of dual description cases with more than 50k core hours. These cases account for 1.5 million of the total amount of 2 million core hours spent on dual description instances.

$ \min(Q) /2$	Core hours	linaut (P)	rays (orbits)	aut (<i>Q</i>)	neighbours (orbits)
136	59 277	660 602 880	64 001 686	10 321 920	1 038 153 863
84	75 467	12 288	171 496 157	384	1 514 557 045
99	84 197	589 824	137 739 671	18 432	1 842 205 495
90	85 349	73 728	185 824 962	2 304	2 058 568 310
74	95 784	128	333 146 387	16	1 257 559 244
80	97 118	7 680	108 828 919	480	764 775 430
81	181 570	1 296	254 734 260	2 592	254 734 260
80	219 437	128	772 745 513	256	772 745 513
82	245 030	432	680 747 757	864	680 747 757
76	355 554	24	1 549 616 491	48	1 549 616 491

Hard to reach perfect forms

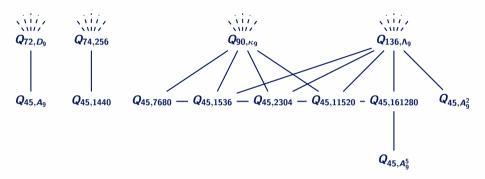


Figure: Part of Voronoi graph showing all perfect forms that are only connected via high-incidence perfect forms.

• All other forms are connected via forms with $|\text{Min } Q| \leq 2 \cdot 58$.

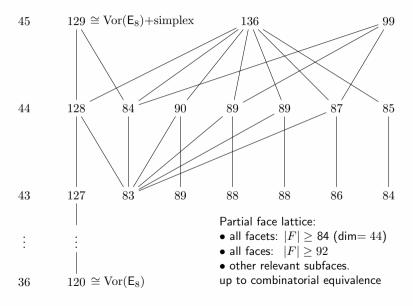
Thank you!

Preprint:

https://arxiv.org/abs/2508.20719

Thank you!

Kissing numbers



Canonical functions - Examples

Graph Isomorphism: $X = \{\text{n-vertex graphs } G = (V, E)\}, G = \text{Sym}(n).$

Well researched area. Babai: canonical function in quasi-polynomial time.

Important: Many practically efficient canonical functions and libraries.

PQF equivalence:
$$X = S^d_{>0}(\mathbb{Q}), G = GL_d(\mathbb{Z}), Q \circ U := U^t QU$$

Difficulty: infinite size orbits. **Idea:** G also acts on finite set Min (Q)

"A canonical form for positive definite matrices" [DSH \lor vW20]. \rightarrow GI

Polyhedral Cone:
$$X = \{\{v_1, \ldots, v_m\} \subset \mathbb{R}^n\}, G = GL_n(\mathbb{R})\}$$

"Computing symmetry groups of polyhedra" [BDSPRS14] \rightarrow GI

Face equivalence:
$$X = \{ \text{faces of } P \}, G \subset \text{Aut}(P).$$

Permutation group acting on sets: "Minimal and Canonical images" [JJPW19]

Face equivalence

- Each face can be described by the set of rays $F \subset [m]$ contained in it.
- ullet Polyhedral symmetry group can be described as a permutation group $oldsymbol{G}\subset \operatorname{\mathsf{Sym}}_{oldsymbol{m}}.$
- $X = \{F \subset [m] : F \text{ is a face of } \mathcal{P}\}, \ \sigma \circ F = \sigma(F) = \{\sigma(x) : x \in F\}.$
- Define total ordering \leq on $\mathcal{P}([m])$, then

$$\theta_m(F) = \min_{\leqslant} (\operatorname{Orb}(G, F))$$

is canonical. Use stabilizer chain to calculate $\theta_m(F)$ without full enumeration.

- (*Minimal and Canonical images*, JJPW, 2017): dynamical ordering tailored for each orbit. Constructed in a canonical way during the algorithm.
- Up to multiple orders of magnitude faster. (1 min. vs 2 ms in GAP)
- **Mathieu** ported the GAP routines and the package to C++: **even faster**.