Cryptanalysis of rank-2 module-LIP:
a single real embedding is all it takes
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The lattice isomorphism problem for Z"

rotate
e o o o o o o

Lo

" L1=0-72"
B’ long basis of L

Lattice Isomorphism Problem (LIP) assumption
recovering O from B’ is hard
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Equivalent formulation with Gram matrices

Z"-LIP: Given B’ = O - B with e o o o o o o
» O € 0,(R) orthogonal
» B a basis of Z"

Find O
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Number field: K = Q[X]/P(X)

» K=Q
» K =Q[X]/(X?+1) with d = 2* ~» power-of-two cyclotomic field
» K=Q[X]/(X? — X —1) with d prime ~» NTRUPrime field

Ring of integers: Ok C K, for this talk Ok = Z[X]/P(X)

> OK =7
» Ok = Z[X]/(X? + 1) with d = 2* ~» power-of-two cyclotomic ring
» Ok = Z[X]/(X? — X — 1) with d prime ~» NTRUPrime ring of integers
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Embeddings

Field embeddings: or: K — C, X— o

Canonical embedding: o: K — CY
y = (o1(y), - ,04(y))
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Embeddings

Field embeddings: or: K — C, X— o

Canonical embedding: o: K — CY
y = (o1(y), - ,04(y))

» real embedding: o;(K) C R CC.
» Otherwise: complex embedding
» we can see K as a rank d Q-subspace of R x C?2 C C¢

» this induces a geometry on K:

(a, b) := (o(a), (b)) = o(a)*o(b) = LiL, oi(a)oi(b) € R
lall? := [lo(a)ll3 = Ty loi(a)|* € R.
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Module lattices

(Free) module:

[M = {B-x|x € Ok} for some matrix B € OK* with detx(B) # 0}
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Module lattices

(Free) module:

[M = {B-x|x € Ok} for some matrix B € OK* with detx(B) # 0}

» k is the module rank

» B is a module basis of M

o(M) is a lattice:
» of Z-rank n:=d -k

» with basis (a(biX’))1<i<k
0<j<d
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The module lattice isomorphism problem

LIP for Z":
Given G = BTB with B a basis

of Z", find B
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The module lattice isomorphism problem

LIP for Z": Module-LIP for Of:
Given G = BTB with B a basis Given G = o(B)*o(B) with B a
of Z", find B basis of O, find B
> hermitian
rank 2

Hawk relies on
module-LIP for the module C?i, in a power-of-two cyclotomic field
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Cryptanalysis of rank-1 module-LIP

Notations:

» We consider the case Ly = zOk for some z € Ok
» K a CM-field

Objective: Given zOk and zz, recover z

Gentry-Szydlo algorithm: recovers z in classical polynomial-time

Extension by Lenstra-Silverberg: to all CM-fields

Our contribution: generalization to all number fields

,[Generalized GS-algorithm: this work] .............................. .

Let K be any field that is GS-friendly. Given zOk and |ok(2z)| for all .,
embeddings ok, one can recover z € Ok in classical polynomial time.
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Cryptanalysis of rank-2 module-LIP

Notations:

» We consider the case Ly = 0,2(.

Objective: Given G := o(B)*c(B), recover B
Current state of cryptanalysis:
NTRUPrime field
(n,2rn) =(1,d - 1)

¥
® ®
0
Totally real What about here? Totally imaginary
(n,2n) = (d,0) (rn,2n) = (0,d)
also broken! )
Broken! HAWK (CM field)
[MPMPW24] (this work)
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Plan of attack

(1) Reconstruction

BB Recover BB
from o(B)*o(B).
I

BB
N
(3) Absolute recovery (2) Ideal recovery
ok+ : L1 = C z1 := a+ bi
recover some |0k +(21)] recover 1Oy, .
|
710y,
¥

(4) Ideal-LIP
lok,+(21)] ———

Recover z; = a + bi.
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(1) Cryptanalysis of module-LIP: when P has a real root

Notations:

Objective: Given G := o(B)*oc(B), recover B

Key point: if P has at least 1 real root, then from G we can
recover

2 2
Tp_ (a8 +b° ac+bd\ _ (g1 q 9
B'B= (ac+bd 2+d?) T g a) € Ok

Idea: For a real embedding o1 : K — R C C we have

[ o1(B)*o1(B) = 01(B) "o1(B) = 01(B" B) ]

Todo: recover BT B from o1(B' B)
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Goal: recover q € Ok from real embedding(s) oi(q).
Each embedding o;: K — R is injective.

Z-basis 01,...,04 of Ok, q = Z?:] Xj0j

Totally real: o(q) = Z;jzl xi - o(0;) € RY

vV vVv.v Y

d unknowns, d equations == recover x; with linear algebra
» One real embedding: o1(q) =Y7,x -01(0) ER

d unknowns, 1 equation...
» Assume: Xx; are small

» Find small integer combination of x; such that

71(q) = Y xi - 61(07)

» This is a lattice problem!
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(1) Recovery via lattice reduction

2*.51(q) 2*-&1(a1) ... 2*-51(04)
1 0 0
a=| o 1 0
0 0 1

Note that

1A - (=L x1, .o xa)I? = 22 - (81(9) — Y x561(0)))* + D %7 <1+ %
j j j

<p0|y(d, |Xi | ).z—precision
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(1) Recovery via lattice reduction

2*.51(q) 2*-&1(a1) ... 2*-51(04)
1 0 0
a=| o 1 0
0 0 1

Note that

A (=1, x1, .., xa) 1P = 22 (B1(@) — X x51(0)) + 20 <14+ %
j J J

<p0|y(d, |Xi | ).z—precision

» Increasing A makes the lattice L(A) sparser
» v:=A-(—-1,x1,...,x9) is short
» For sufficiently large A = poly(d,log|x;|), LLL will recover v
14 / 26



Bit precision A

(1) Required precision for NTRUPrime field

7000 1

6000 4

ot

[

(e

o
!

4000 1

3000 4

2000 1

1000 4

— ¢ (0.0346p* + 5.35p — 40.92)
@ (0.0376p + 7.25p — 76.90)
g4 (0.0403p + 9.80p — 120.883)

50 100 150 200 250
Degree p (prime)

300
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Plan of attack

(1) Reconstruction

BB Recover BB
from o(B)*o(B).
I

BB
N
(3) Absolute recovery (2) Ideal recovery
ok+ : L1 = C z1 := a+ bi
recover some |0k +(21)] recover 1Oy, .
|
710y,
¥

(4) Ideal-LIP
lok,+(21)] ———

Recover z; = a + bi.
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(2) Ideal recovery

» Note that i € K
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(2) Ideal recovery

» Note that i € K
» Let Lj:= K(i)
» DNote that a’+ b> = Ny /k(a+ bi)

Objective: Given Q := B'B, recover (a+ bi)O,

Notation:

,[Lemma: Ideal recovery [CMEPMPW25, Lemma 3.5]} --------------------- .

i Let Iy := 21(91_1 + 22(9[_1 , then

zi(det(B)i + q2) = qu 22,

and Z](')[_1 =IpmN lez_llM =N ql(det(B)i + qz)_llM.



(3) Absolute embeddings

Notation:

» L; has embeddings ok,+ given by

ori(a+ bi) = or(a) £ iok(b) for k=1,...,d,+ € {+,—}.
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(3) Absolute embeddings

Notation:

» L; has embeddings ok,+ given by
ok+(a+ bi) =or(a) Liok(b) for k=1,...,d,£¢€ {+,—}.

Goal: recover (some) |ok4+(z1)]

» We know &k := ok(a)? + ok(b)? and ~k := |ok(a)|? + |ok(b)|?
For real embedding ok(K) C R, we have
ok (21)1? = |ow(a)  iok(b)|> = ow(a® + b)

v[Lemma: Absolute recovery (up to pairwise Swaps)j ................. =

The polynomial f(t) = t? — 2+t + |0/,

has real roots {|Uk,+(21)|2, ]Uk,—(ll)fz}-



(3) Absolute embeddings

fi(t) = t2 — 2(|ow(a)]? + |ow(b)[?) + |ow(a® + b?)|?

fi(t1) =0 fi(tk,+) =0 fa(ts,+) =0

I

lort(2)P = o (@)=t |ok+(21)]? é— |ow—(21)]? |oa(21)> — |0, (21)]?

real embeddings complex embeddings (up to pairwise swaps)

v’ X 19 / 26
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(3) Absolute embeddings (if 2-transitive)

Notation:

Assume Gal(P) is 2-transitive

True for NTRU Prime and most number fields

Kz := Q(ar,+1, @r+1) is a degree d — 1 extension of K.
a’+ b%,@aa+ bb € K

K> has d(d — 1) complex embeddings

vV v.vy

Ok, Op41 F> Oy Oty 1 > O

» Ly =Ky(i), okt :i— Li
Idea: find root zyz; € Ly of f(t) = t> — 2(aa + bb) + (a* + b?)

Then use embeddings to obtain |ok+(2z1)| for all k and £+ € {+,0}:

lok (1) = o, x+(7121)

20 / 26



(3) Absolute embeddings (if 2-transitive)

f(t) = t2 — 2(aa + bb) + (a° + b?)

f(t)=0 for t € Ly

|
.

Z1zy é———> Z_7_

lok+(z)? low—(z1)]? loa+(2)]?  log,—(21)I7
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(3) Absolute embeddings (if 2-transitive)

f(t) = t2 — 2(aa + bb) + (a° + b?)

f(t)=0 for t € Ly

|
.

Z1zy é———> Z_7_

lok+(z)? low—(z1)]? loa+(2)]?  log,—(21)I7

[only one (optional) choice] 21 / 26




Plan of attack

(1) Reconstruction

BB Recover BB
from o(B)*o(B).
I

BB
N
(3) Absolute recovery (2) Ideal recovery
ok+ : L1 = C z1 := a+ bi
recover some |0k +(21)] recover 1Oy, .
|
710y,
¥

(4) Ideal-LIP
lok,+(21)] ———

Recover z; = a + bi.
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(4) Ideal-LIP overview

2-transitive
Galois group?

/ AN
Yes No
/ N
Q tum? Heuristic Quantum
/i?n ET' (Log-unit scaling)
Yes No

// N

Heuristic Classical
Provable Quantum| (GS-friendly)
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(4) Ideal-LIP (if 2-transitive)

From (2): (generators of) z10y,

From (3): all absolute embeddings |ok,+(21)]

[rank—l module-LIP! ]

Final step: use generalized Gentry-Szydlo algorithm to recover z;

Heuristic assumption: all number fields are GS-friendly.

-{Main result (1): heuristic classical if 2—transitive} ------------- 3

Let K = Q[X]/P(X) be a number field with at least one real embedding
and such that Gal(P) acts 2-transitively on the roots of P. Then
there is a heuristic polynomial time classical algorithm that solves
the rank-2 module-LIP problem on Ok.

__________________________________________________________________
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(4) Ideal-LIP (alternative)

From (2): (generators of) z10y,
From (3): all absolute embeddings |ok,+(21)]

1. Compute principal generator g € Oy of 710k,

2. Compute generators of Of and basis of Log(|o,(Of)|)

3. Then g-zl_1=u for a unit u € O

4. Then Log(|o,(g)|) — Log(low,(21)]) = Log(|ow, (u)l)

5. Recover u from Log(|o(u)l|)

,[Main result (2): provable quantum if 2—transitive} ---------------- .

Let K = Q[X]/P(X) be a number field with at least one real embedding
and such that Gal(P) acts 2-transitively on the roots of P. Then
there is a polynomial time quantum algorithm that solves the rank-2
module-LIP problem on Ok.

__________________________________________________________________



(4) Ideal-LIP (alternative)

From (2): (generators of) z10y,

From (3): one absolute embedding |o1,4(21)]

25 / 26



(4) Ideal-LIP (alternative)

From (2): (generators of) z10y,

From (3): one absolute embedding |o1,4(21)]

1. Compute principal generator g € Oy, of 710k,
2. Compute generators of Of and basis of Log(|o(Of)|)

3. Then g-zl_1=u for a unit ue(’)t1

25 / 26



(4) Ideal-LIP (alternative)

From (2): (generators of) z10y,

From (3): one absolute embedding |o1,4(21)]

1. Compute principal generator g € Oy, of 710k,

2. Compute generators of Of and basis of Log(|o(Of)|)
3. Then g-zl_1=u for a unit ue(’)t1

4. Then log(|o1,+ (2)]) — log(|os,+ (21)]) = log(lon,+ (u)])

25 / 26



(4) Ideal-LIP (alternative)

From (2): (generators of) z10y,

From (3): one absolute embedding |o1,4(21)]

. Compute principal generator g € O, of 71Ok,
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. Then g-zl_1=u for a unit ue(’)t1
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(4) Ideal-LIP (alternative)

From (2): (generators of) z10y,

From (3): one absolute embedding |o1,4(21)]

1. Compute principal generator g € Oy, of 710k,

2. Compute generators of Of and basis of Log(|o (O} )|)

3. Then g-zl_1 = u for a unit u € Of,

4. Then log(|o,+(g)]) — log(|o+ (21)]) = log(lers.+ (u)])

5. Recover u from log(|o1,+(u)l|)
{Main result (3): heuristic quantum} .............................. =
Let K = Q[X]/P(X) be a number field with at least one real

embedding. Then there is a heuristic polynomial time quantum
algorithm that solves the rank-2 module-LIP problem on Ok.

__________________________________________________________________
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» Security of rank-2 module-LIP depends on the number field
» Real embeddings can cause problems

New state of cryptanalysis:
NTRUPrime field
(r1,2r2) = (1, d— 1)
\

® ®
0
Totally real At least one real embedding Totally imaginary
(r1,2r2) = (d, 0) (r1a2r2) = (07 d)
also broken! )
Broken! HAWK (CM field)

Thank you!
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