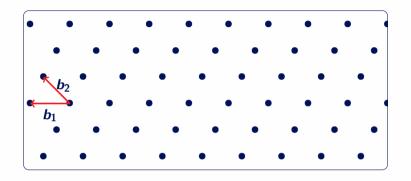
Cryptanalysis of rank-2 module-LIP: a single real embedding is all it takes

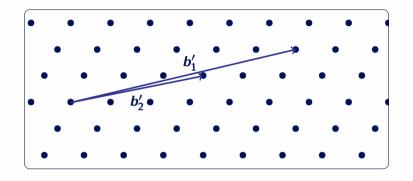
Bill Allombert, Alice Pellet-Mary (Université de Bordeaux) Wessel van Woerden (Université de Bordeaux & PQShield) .

Lattices

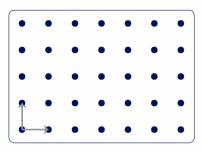


- $m{\mathcal{L}} = \{\sum_{i=1}^n x_i b_i \mid \forall i, \, x_i \in \mathbb{Z}\}$ is a lattice
- $lackbrack (b_1,\ldots,b_n)=:B\in\mathsf{GL}_n(\mathbb{R})$ is a basis (not unique)
- ▶ *n* is the dimension (or rank)

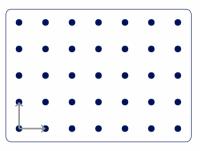
Lattices



- $m{\mathcal{L}} = \{\sum_{i=1}^n x_i b_i \mid orall i, \, x_i \in \mathbb{Z} \}$ is a lattice
- $lackbox{ } (b_1,\ldots,b_n)=:B\in\mathsf{GL}_n(\mathbb{R}) \text{ is a basis }$ (not unique)
- ▶ *n* is the dimension (or rank)

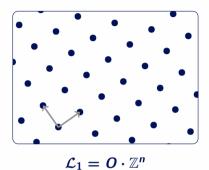


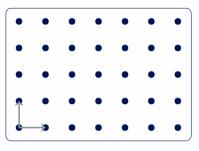
$$\mathcal{L}_0 = \mathbb{Z}^n$$



 $\mathcal{L}_0 = \mathbb{Z}^n$

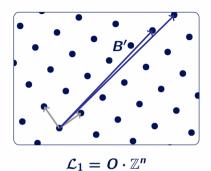
 $egin{array}{c} ext{rotate} \\ ext{orthonormal} \\ ext{$O \in \mathcal{O}_n(\mathbb{R})$} \end{aligned}$



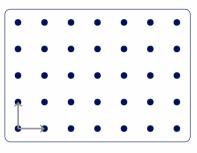


 $\mathcal{L}_0 = \mathbb{Z}^n$

 $egin{array}{c} ext{rotate} \\ ext{orthonormal} \\ O \in \mathcal{O}_n(\mathbb{R}) \end{array}$

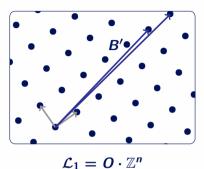


B' long basis of \mathcal{L}_1



 $\mathcal{L}_0 = \mathbb{Z}^n$

rotateorthonormal $O \in \mathcal{O}_n(\mathbb{R})$



 $\mathcal{L}_1 = \mathcal{O} \cdot \mathbb{Z}^n$

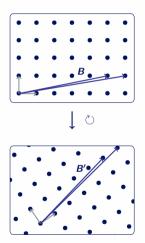
B' long basis of \mathcal{L}_1

Lattice Isomorphism Problem (LIP) assumption recovering O from B' is hard B basis of \mathbb{Z}^n , $O \in \mathcal{O}_n(\mathbb{R}) : B' = O \cdot B$.

 \mathbb{Z}^{n} -LIP: Given $B' = O \cdot B$ with

- $ightharpoonup O \in O_n(\mathbb{R})$ orthogonal
- ▶ B a basis of \mathbb{Z}^n

Find O (equivalently: find B)



$$\mathbb{Z}^{n}$$
-LIP: Given $B' = O \cdot B$ with

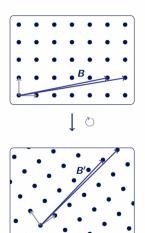
- $ightharpoonup O \in O_n(\mathbb{R})$ orthogonal
- ▶ B a basis of \mathbb{Z}^n

Find **O** (equivalently: find **B**)

Gram matrix associated to B':

$$G = (B')^T B' = B^T (O^T O)B = B^T B$$

 \Rightarrow **O** has disappeared



$$\mathbb{Z}^{n}$$
-LIP: Given $B' = O \cdot B$ with

- $ightharpoonup O \in O_n(\mathbb{R})$ orthogonal
- ightharpoonup B a basis of \mathbb{Z}^n

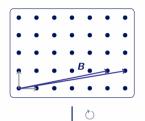
Find O (equivalently: find B)

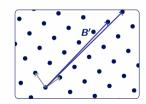
Gram matrix associated to B':

$$G = (B')^T B' = B^T (O^T O)B = B^T B$$

 \Rightarrow **O** has disappeared

$$\mathbb{Z}^{n}$$
-LIP (Gram matrix):
Given $G = B^{T}B$ with B a basis of \mathbb{Z}^{n} , find B .





 \mathbb{Z}^{n} -LIP: Given $B' = O \cdot B$ with

- $ightharpoonup O \in O_n(\mathbb{R})$ orthogonal
- ▶ B a basis of \mathbb{Z}^n

Find O (equivalently: find B)

Gram matrix associated to B':

$$G = (B')^T B' = B^T (O^T O)B = B^T B$$

 \Rightarrow O has disappeared

 \mathbb{Z}^{n} -LIP (Gram matrix):

Given $G = B^T B$ with B a basis of \mathbb{Z}^n ,

find B.

Example:

$$B = \begin{pmatrix} 1 & 1 \\ 4 & 5 \end{pmatrix}$$

$$B' = \begin{pmatrix} 3.96 & 4.83 \\ -1.13 & -1.63 \end{pmatrix}$$

$$G = \begin{pmatrix} 17 & 21 \\ 21 & 26 \end{pmatrix} \\
= B^T B = (B')^T B'$$

Given G, recover $B \in \mathbb{Z}^{2 imes 2}$ with $\det(B) = \pm 1$ such that $B^T B = G$

Module-LIP

Number field: $K = \mathbb{Q}[X]/P(X)$ (P irreducible, deg(P) = d)

Number field: $K = \mathbb{Q}[X]/P(X)$ (P irreducible, deg(P) = d)

- $\mathbf{K} = \mathbb{Q}$
- $ightharpoonup K = \mathbb{Q}[X]/(X^d+1)$ with $d=2^\ell \leadsto$ power-of-two cyclotomic field
- $ightharpoonup K = \mathbb{Q}[X]/(X^d-X-1)$ with d prime \leadsto NTRUPrime field

```
Number field: K = \mathbb{Q}[X]/P(X) (P irreducible, \deg(P) = d)

\blacktriangleright K = \mathbb{Q}

\blacktriangleright K = \mathbb{Q}[X]/(X^d + 1) with d = 2^\ell \leadsto \text{power-of-two cyclotomic field}

\blacktriangleright K = \mathbb{Q}[X]/(X^d - X - 1) with d prime \leadsto \text{NTRUPrime field}
```

Ring of integers:
$$\mathcal{O}_K \subset K$$
, for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$ (more generally $\mathbb{Z}[X]/P(X) \subseteq \mathcal{O}_K$ but \mathcal{O}_K can be larger)

Number field:
$$K = \mathbb{Q}[X]/P(X)$$
 (P irreducible, $deg(P) = d$)

- $\mathbf{K} = \mathbb{Q}$
- $ightharpoonup K=\mathbb{Q}[X]/(X^d+1)$ with $d=2^\ell \leadsto$ power-of-two cyclotomic field
- $lackbox{m{ iny K}} = \mathbb{Q}[m{X}]/(m{X}^d m{X} m{1})$ with $m{d}$ prime \leadsto NTRUPrime field

Ring of integers:
$$\mathcal{O}_K \subset K$$
, for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$ (more generally $\mathbb{Z}[X]/P(X) \subseteq \mathcal{O}_K$ but \mathcal{O}_K can be larger)

- $ightharpoonup \mathcal{O}_{\kappa} = \mathbb{Z}$
- $lacksymbol{ ilde{O}_{K}} = \mathbb{Z}[X]/(X^d+1)$ with $d=2^\ell \leadsto$ power-of-two cyclotomic ring
- $lacksymbol{ iny} \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[X]/(X^d-X-1)$ with d prime \leadsto NTRUPrime ring of integers

```
(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))
Field embeddings: \sigma_k : K \to \mathbb{C}, X \mapsto \alpha_k
Canonical embedding: \sigma : K \to \mathbb{C}^d
y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))
```

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$
Field embeddings: $\sigma_k : K \to \mathbb{C}, X \mapsto \alpha_k$
Canonical embedding: $\sigma : K \to \mathbb{C}^d$
 $y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))$

▶ real embedding: $\sigma_i(K) \subset \mathbb{R} \subset \mathbb{C}$.

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$
Field embeddings: $\sigma_k : K \to \mathbb{C}, X \mapsto \alpha_k$
Canonical embedding: $\sigma : K \to \mathbb{C}^d$
 $y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))$

- ▶ real embedding: $\sigma_i(K) \subset \mathbb{R} \subset \mathbb{C}$.
- ▶ Otherwise: complex embedding (occur in conjugate pairs)

```
(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))

Field embeddings: \sigma_k : K \to \mathbb{C}, X \mapsto \alpha_k

Canonical embedding: \sigma : K \to \mathbb{C}^d
y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))
```

- ▶ real embedding: $\sigma_i(K) \subset \mathbb{R} \subset \mathbb{C}$.
- ▶ Otherwise: complex embedding (occur in conjugate pairs)
- lacktriangle we can see K as a rank d \mathbb{Q} -subspace of $\mathbb{R}^{r_1} imes \mathbb{C}^{2r_2} \subset \mathbb{C}^d$

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$

Field embeddings:
$$\sigma_k: K \to \mathbb{C}, X \mapsto \alpha_k$$
Canonical embedding: $\sigma: K \to \mathbb{C}^d$
 $y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))$

- ▶ real embedding: $\sigma_i(K) \subset \mathbb{R} \subset \mathbb{C}$.
- ▶ Otherwise: complex embedding (occur in conjugate pairs)
- lacktriangle we can see K as a rank d \mathbb{Q} -subspace of $\mathbb{R}^{r_1} imes \mathbb{C}^{2r_2} \subset \mathbb{C}^d$
- ▶ this induces a geometry on K:

$$\langle a,b\rangle := \langle \sigma(a),\sigma(b)\rangle = \sigma(a)^*\sigma(b) = \sum_{i=1}^d \overline{\sigma_i(a)}\sigma_i(b) \in \mathbb{R}$$

$$\|a\|^2 := \|\sigma(a)\|_2^2 = \sum_{i=1}^d |\sigma_i(a)|^2 \in \mathbb{R}.$$

(Free) module:

$$M = \{B \cdot x \, | \, x \in \mathcal{O}_K^k \}$$
 for some matrix $B \in \mathcal{O}_K^{k imes k}$ with $\det_K(B)
eq 0$

(Free) module:

$$M = \{B \cdot x \, | \, x \in \mathcal{O}_K^k\}$$
 for some matrix $B \in \mathcal{O}_K^{k imes k}$ with $\det_K(B)
eq 0$

- ▶ **k** is the module rank
- ightharpoonup B is a module basis of M

```
(if the module is not free, it has a ''pseudo-basis'' instead)
```

(Free) module:

$$M = \{B \cdot x \mid x \in \mathcal{O}_K^k\}$$
 for some matrix $B \in \mathcal{O}_K^{k \times k}$ with $\det_K(B) \neq 0$

- ▶ **k** is the module rank
- ▶ B is a module basis of M (if the module is not free, it has a ''pseudo-basis'' instead)

$\sigma(M)$ is a lattice:

ightharpoonup of \mathbb{Z} -rank $n:=d\cdot k$

(Free) module:

$$M = \{B \cdot x \,|\, x \in \mathcal{O}_K^k\}$$
 for some matrix $B \in \mathcal{O}_K^{k imes k}$ with $\det_K(B)
eq 0$

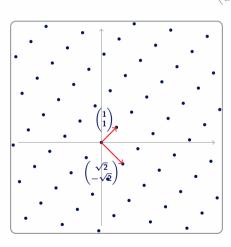
- ▶ **k** is the module rank
- ▶ B is a module basis of M (if the module is not free, it has a ''pseudo-basis'' instead)

$\sigma(M)$ is a lattice:

- ightharpoonup of \mathbb{Z} -rank $n:=d\cdot k$
- with basis $(\sigma(b_iX^j))_{\substack{1 \le i \le k \\ 0 \le j \le d}}$ (b_i columns of B)

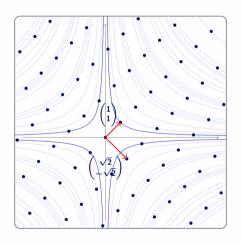
An example

$$K = \mathbb{Q}[X]/(X^2 - 2), \quad \mathcal{O}_K = \mathbb{Z}[X]/(X^2 - 2), \quad \sigma: a + bX \mapsto \begin{pmatrix} a + b\sqrt{2} \\ a - b\sqrt{2} \end{pmatrix}, \quad \mathcal{L} = \sigma(\mathcal{O}_K)$$



An example

$$K = \mathbb{Q}[X]/(X^2 - 2), \quad \mathcal{O}_K = \mathbb{Z}[X]/(X^2 - 2), \quad \sigma: a + bX \mapsto \begin{pmatrix} a + b\sqrt{2} \\ a - b\sqrt{2} \end{pmatrix}, \quad \mathcal{L} = \sigma(\mathcal{O}_K)$$



LIP for \mathbb{Z}^n : Given $G = B^T B$ with B a basis of \mathbb{Z}^n , find B

LIP for \mathbb{Z}^n :
Given $G = B^T B$ with B a basis of \mathbb{Z}^n , find B

Module-LIP for \mathcal{O}_K^n : Given $G = \sigma(B)^*\sigma(B)$ with B a basis of \mathcal{O}_K^n , find B

LIP for \mathbb{Z}^n : Given $G = B^T B$ with B a basis of \mathbb{Z}^n , find B Module-LIP for \mathcal{O}_K^n : Given $G = \sigma(B)^*\sigma(B)$ with B a basis of \mathcal{O}_K^n , find B

Remarks.

- lacktriangledown we consider $\sigma(B)^*=\overline{\sigma(B)}^T$ because we use hermitian norm in \mathbb{C}^{2d}
- lacktriangle only rank 2 modules in this talk (and even only \mathcal{O}_K^2)

LIP for \mathbb{Z}^n : Given $G = B^T B$ with B a basis of \mathbb{Z}^n , find B Module-LIP for \mathcal{O}_K^n : Given $G = \sigma(B)^*\sigma(B)$ with B a basis of \mathcal{O}_K^n , find B

Remarks.

- lacktriangle we consider $\sigma(B)^* = \overline{\sigma(B)}^T$ because we use hermitian norm in \mathbb{C}^{2d}
- ightharpoonup only rank 2 modules in this talk (and even only \mathcal{O}_K^2)

Hawk relies on

module-LIP for the module \mathcal{O}_K^2 , in a power-of-two cyclotomic field $(K=\mathbb{Q}[X]/(X^d+1)$ with d=512 or d=1024)

```
Notations: K = \mathbb{Q}[X]/P(X), \mathcal{O}_K = \mathbb{Z}[X]/P(X)
```

- lacktriangledown We consider the case $\mathcal{L}_0=z\mathcal{O}_{\mathcal{K}}$ for some $z\in\mathcal{O}_{\mathcal{K}}$
- ▶ K a CM-field

```
Notations: K = \mathbb{Q}[X]/P(X), \mathcal{O}_K = \mathbb{Z}[X]/P(X)
```

- lacktriangledown We consider the case $\mathcal{L}_0=z\mathcal{O}_K$ for some $z\in\mathcal{O}_K$
- ▶ K a CM-field

Objective: Given $z\mathcal{O}_K$ and $\overline{z}z$, recover z (up to a root of unity)

```
Notations: K = \mathbb{Q}[X]/P(X), \mathcal{O}_K = \mathbb{Z}[X]/P(X)
```

- lacktriangledown We consider the case $\mathcal{L}_0=z\mathcal{O}_{\mathcal{K}}$ for some $z\in\mathcal{O}_{\mathcal{K}}$
- ▶ K a CM-field

```
Objective: Given z\mathcal{O}_K and \overline{z}z, recover z (up to a root of unity)
```

Gentry-Szydlo algorithm: recovers z in classical polynomial-time

(when K is a cyclotomic field)

```
Notations: K = \mathbb{Q}[X]/P(X), \mathcal{O}_K = \mathbb{Z}[X]/P(X)
```

- lacktriangledown We consider the case $\mathcal{L}_0=z\mathcal{O}_{\mathcal{K}}$ for some $z\in\mathcal{O}_{\mathcal{K}}$
- ▶ K a CM-field

```
Objective: Given z\mathcal{O}_K and \overline{z}z, recover z (up to a root of unity)
```

Gentry-Szydlo algorithm: recovers z in classical polynomial-time (when K is a cyclotomic field)

Extension by Lenstra-Silverberg: to all CM-fields

```
Notations: K = \mathbb{Q}[X]/P(X), \mathcal{O}_K = \mathbb{Z}[X]/P(X)
```

- ightharpoonup We consider the case $\mathcal{L}_0=z\mathcal{O}_K$ for some $z\in\mathcal{O}_K$
- ▶ K a CM-field

```
Objective: Given z\mathcal{O}_K and \overline{z}z, recover z (up to a root of unity)
```

Gentry-Szydlo algorithm: recovers z in classical polynomial-time

(when K is a cyclotomic field)

Extension by Lenstra-Silverberg: to all CM-fields

Our contribution: generalization to all number fields

(under a light heuristic)

```
Generalized GS-algorithm: this work -----
```

Let K be any field that is GS-friendly. Given $z\mathcal{O}_K$ and $|\sigma_k(z)|$ for all

embeddings σ_k , one can recover $z \in \mathcal{O}_K$ in classical polynomial time.

Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$, r_1 real, and $2r_2$ complex embeddings

• We consider the case $\mathcal{L}_0 = O_K^2$.

Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$, r_1 real, and $2r_2$ complex embeddings

• We consider the case $\mathcal{L}_0 = O_K^2$.

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)

Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$, r_1 real, and $2r_2$ complex embeddings

lacktriangledown We consider the case $\mathcal{L}_0 = O_K^2$.

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)
Current state of cryptanalysis:

Totally real
$$(r_1, 2r_2) = (d, 0)$$

Broken!

[MPMPW24]

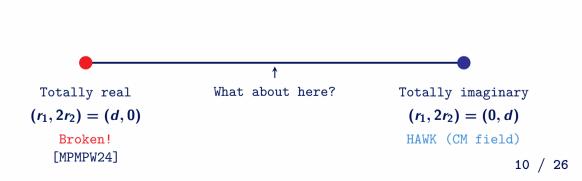
Totally imaginary
$$(r_1, 2r_2) = (0, d)$$

HAWK (CM field)

Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$, r_1 real, and $2r_2$ complex embeddings

lacktriangle We consider the case $\mathcal{L}_0 = O_K^2$.

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)
Current state of cryptanalysis:

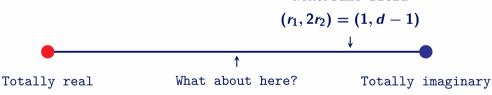


Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$, r_1 real, and $2r_2$ complex embeddings

lacktriangle We consider the case $\mathcal{L}_0 = O_K^2$.

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)

Current state of cryptanalysis:



$$(r_1, 2r_2) = (d, 0)$$

Broken!

$$(r_1, 2r_2) = (0, d)$$

NTRUPrime field

[MPMPW24]

10 / 2

Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$, r_1 real, and $2r_2$ complex embeddings

lacktriangle We consider the case $\mathcal{L}_0 = O_K^2$.

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)

Current state of cryptanalysis:

NTRUPrime field
$$(r_1,2r_2)=(1,d-1)$$
 \uparrow

Totally real What about here? Totally imaginary $(r_1,2r_2)=(d,0)$ $(r_1,2r_2)=(0,d)$

Broken!

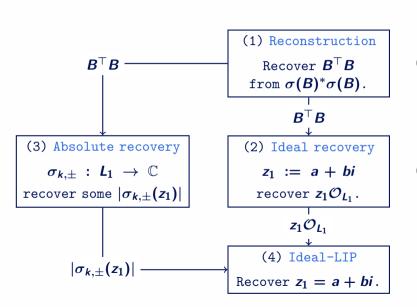
[MPMPW24]

also broken!
(this work)

HAWK (CM field)

10 / 2

Plan of attack



(where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{K}^{2 \times 2}$

(where $L_1 = K(i)$)

(1) Cryptanalysis of module-LIP: when P has a real root

Notations:
$$K = \mathbb{Q}[X]/P(X)$$
, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)

(1) Cryptanalysis of module-LIP: when P has a real root

Notations:
$$K = \mathbb{Q}[X]/P(X)$$
, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)

Key point: if $m{P}$ has at least $m{1}$ real root, then from $m{G}$ we can

recover

$$B^{\mathsf{T}}B = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} =: \begin{pmatrix} q_1 & q_2 \\ q_2 & q_4 \end{pmatrix} \in \mathcal{O}_{\mathsf{K}}^2$$

(1) Cryptanalysis of module-LIP: when P has a real root

Notations: $K = \mathbb{Q}[X]/P(X)$, $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given
$$G := \sigma(B)^* \sigma(B)$$
, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$)

Key point: if \boldsymbol{P} has at least 1 real root, then from \boldsymbol{G} we can recover

$$B^{\mathsf{T}}B = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} =: \begin{pmatrix} q_1 & q_2 \\ q_2 & q_4 \end{pmatrix} \in \mathcal{O}_{\mathsf{K}}^2$$

Idea: For a real embedding $\sigma_1: K \to \mathbb{R} \subset \mathbb{C}$ we have

$$\left[\sigma_1(B)^* \sigma_1(B) = \sigma_1(B)^\top \sigma_1(B) = \sigma_1(B^\top B) \right]$$

Todo: recover $B^{\top}B$ from $\sigma_1(B^{\top}B)$

▶ Goal: recover $q \in \mathcal{O}_K$ from real embedding(s) $\sigma_i(q)$.

- ▶ Goal: recover $q \in \mathcal{O}_K$ from real embedding(s) $\sigma_i(q)$.
- \blacktriangleright Each embedding $\sigma_i:K\to\mathbb{R}$ is injective. (with infinite precision)

- ▶ Goal: recover $q \in \mathcal{O}_K$ from real embedding(s) $\sigma_i(q)$.
- lacktriangle Each embedding $\sigma_i:K o\mathbb{R}$ is injective. (with infinite precision)
- lacksquare Z-basis o_1,\ldots,o_d of \mathcal{O}_K , $q=\sum_{i=1}^d x_i o_i$

- ▶ Goal: recover $q \in \mathcal{O}_K$ from real embedding(s) $\sigma_i(q)$.
- ightharpoonup Each embedding $\sigma_i:K o\mathbb{R}$ is injective. (with infinite precision)
- $lacksymbol{ iny}$ Z-basis o_1,\ldots,o_d of \mathcal{O}_K , $q=\sum_{i=1}^d x_i o_i$
- ▶ Totally real: $\sigma(q) = \sum_{i=1}^d x_i \cdot \sigma(o_i) \in \mathbb{R}^d$

d unknowns, d equations \implies recover x_i with linear algebra

- lacktriangledown Goal: recover $q\in\mathcal{O}_{\mathcal{K}}$ from real embedding(s) $\sigma_i(q)$.
- ightharpoonup Each embedding $\sigma_i:K o\mathbb{R}$ is injective. (with infinite precision)
- $lacksymbol{ iny}$ \mathbb{Z} -basis o_1,\ldots,o_d of $\mathcal{O}_{\mathcal{K}},\ q=\sum_{i=1}^d x_i o_i$
- ▶ Totally real: $\sigma(q) = \sum_{i=1}^{d} x_i \cdot \sigma(o_i) \in \mathbb{R}^d$ d unknowns, d equations \implies recover x_i with linear algebra
- ▶ One real embedding: $\sigma_1(q) = \sum_{i=1}^d x_i \cdot \sigma_1(o_i) \in \mathbb{R}$ d unknowns, 1 equation...

- lacktriangledown Goal: recover $q\in\mathcal{O}_{\mathcal{K}}$ from real embedding(s) $\sigma_i(q)$.
- lacktriangle Each embedding $\sigma_i:K o\mathbb{R}$ is injective. (with infinite precision)
- $lacksymbol{ iny}$ \mathbb{Z} -basis o_1,\ldots,o_d of $\mathcal{O}_{\mathcal{K}},\ q=\sum_{i=1}^d x_i o_i$
- ▶ Totally real: $\sigma(q) = \sum_{i=1}^{d} x_i \cdot \sigma(o_i) \in \mathbb{R}^d$ d unknowns, d equations \implies recover x_i with linear algebra
- ▶ One real embedding: $\sigma_1(q) = \sum_{i=1}^d x_i \cdot \sigma_1(o_i) \in \mathbb{R}$ d unknowns, 1 equation...
- ightharpoonup Assume: x_i are small

(1) Recovery of $oldsymbol{B}^ opoldsymbol{B}$ from a single real embedding

- ▶ Goal: recover $q \in \mathcal{O}_K$ from real embedding(s) $\sigma_i(q)$.
- lacktriangle Each embedding $\sigma_i:K o\mathbb{R}$ is injective. (with infinite precision)
- $lacksymbol{ iny}$ \mathbb{Z} -basis o_1,\ldots,o_d of $\mathcal{O}_{\mathcal{K}},\ m{q}=\sum_{i=1}^d x_i o_i$
- ▶ Totally real: $\sigma(q) = \sum_{i=1}^{d} x_i \cdot \sigma(o_i) \in \mathbb{R}^d$ d unknowns, d equations \implies recover x_i with linear algebra
- ▶ One real embedding: $\sigma_1(q) = \sum_{i=1}^d x_i \cdot \sigma_1(o_i) \in \mathbb{R}$ d unknowns, 1 equation...
- ightharpoonup Assume: x_i are small
- \blacktriangleright Find small integer combination of x_i such that

$$\left[\tilde{\sigma}_1(q) \underset{2^{-\lambda}}{\approx} \sum_{i=1}^d x_i \cdot \tilde{\sigma}_1(o_i) \right]$$

- ▶ Goal: recover $q \in \mathcal{O}_K$ from real embedding(s) $\sigma_i(q)$.
- ightharpoonup Each embedding $\sigma_i:K o\mathbb{R}$ is injective. (with infinite precision)
- $lacksymbol{ iny}$ Z-basis o_1,\ldots,o_d of \mathcal{O}_K , $q=\sum_{i=1}^d x_i o_i$
- ▶ Totally real: $\sigma(q) = \sum_{i=1}^d x_i \cdot \sigma(o_i) \in \mathbb{R}^d$

d unknowns, d equations \implies recover x_i with linear algebra

- ▶ One real embedding: $\sigma_1(q) = \sum_{i=1}^d x_i \cdot \sigma_1(o_i) \in \mathbb{R}$ d unknowns, 1 equation...
- ightharpoonup Assume: x_i are small
- \blacktriangleright Find small integer combination of x_i such that

$$\left[\tilde{\sigma}_1(q) \underset{2^{-\lambda}}{\approx} \sum_{i=1}^d \mathsf{x}_i \cdot \tilde{\sigma}_1(o_i)\right]$$

▶ This is a lattice problem!

$${m A} = egin{pmatrix} 2^{\lambda} \cdot ilde{\sigma}_1(q) & 2^{\lambda} \cdot ilde{\sigma}_1(o_1) & \dots & 2^{\lambda} \cdot ilde{\sigma}_1(o_d) \ 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Note that

$$\|A \cdot (-1, x_1, \dots, x_d)\|^2 = 2^{2\lambda} \cdot (\tilde{\sigma}_1(q) - \sum_j x_j \tilde{\sigma}_1(o_j))^2 + \sum_j x_j^2 < 1 + \sum_j x_j^2$$
\text{\(\sigma_0 \log poly(d, |x_j|) \cdot 2^{-\text{precision}}\)}

$${f A} = egin{pmatrix} 2^{\lambda} \cdot ilde{\sigma}_1(q) & 2^{\lambda} \cdot ilde{\sigma}_1(o_1) & \dots & 2^{\lambda} \cdot ilde{\sigma}_1(o_d) \ 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Note that

$$\|\boldsymbol{A}\cdot(-1,x_1,\ldots,x_d)\|^2 = 2^{2\lambda}\cdot(\tilde{\sigma}_1(q) - \sum_j x_j\tilde{\sigma}_1(o_j))^2 + \sum_j x_j^2 < 1 + \sum_j x_j^2$$
\text{\(\sigma_0\text{poly}\((d,|x_i|)\cdot 2^{-\text{precision}}\)\)

lacksquare Increasing λ makes the lattice $\mathcal{L}(A)$ sparser

$${f A} = egin{pmatrix} 2^{\lambda} \cdot ilde{\sigma}_1(q) & 2^{\lambda} \cdot ilde{\sigma}_1(o_1) & \dots & 2^{\lambda} \cdot ilde{\sigma}_1(o_d) \ 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Note that

$$\|\boldsymbol{A}\cdot(-1,x_1,\ldots,x_d)\|^2 = 2^{2\lambda}\cdot(\tilde{\sigma}_1(\boldsymbol{q}) - \sum_j x_j\tilde{\sigma}_1(o_j))^2 + \sum_j x_j^2 < 1 + \sum_j x_j^2$$
\text{\(\sigma_0\text{poly}(d,|x_i|)\cdot2-\text{precision}\)}

- ightharpoonup Increasing λ makes the lattice $\mathcal{L}(A)$ sparser
- $\mathbf{v} := \mathbf{A} \cdot (-1, x_1, \dots, x_d)$ is short

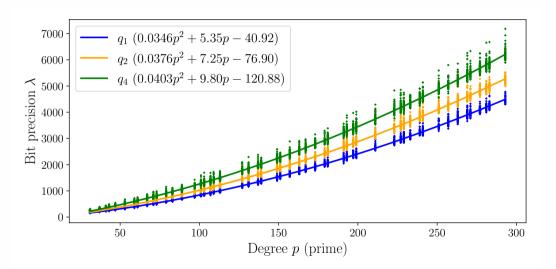
$${f A} = egin{pmatrix} 2^{\lambda} \cdot ilde{\sigma}_1(q) & 2^{\lambda} \cdot ilde{\sigma}_1(o_1) & \dots & 2^{\lambda} \cdot ilde{\sigma}_1(o_d) \ 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Note that

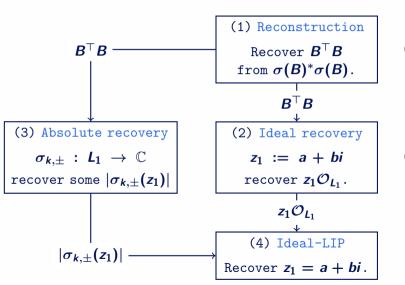
$$\|\boldsymbol{A}\cdot(-1,x_1,\ldots,x_d)\|^2 = 2^{2\lambda}\cdot(\tilde{\sigma}_1(q) - \sum_j x_j\tilde{\sigma}_1(o_j))^2 + \sum_j x_j^2 < 1 + \sum_j x_j^2$$
\text{\(\sigma_0\text{poly}(d,|x_i|)\cdot 2^{-\text{precision}}\)}

- lacktriangleright Increasing λ makes the lattice $\mathcal{L}(A)$ sparser
- $\mathbf{v} := \mathbf{A} \cdot (-1, x_1, \dots, x_d)$ is short
- For sufficiently large $\lambda = \text{poly}(d, \log |x_i|)$, LLL will recover ν

(1) Required precision for NTRUPrime field



Plan of attack



(where
$$B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{\kappa}^{2 \times 2}$$

(where
$$L_1 = K(i)$$
)

16

▶ Note that $i \not\in K$ (as then $\sigma_1(i)^2 = -1$ but $\sigma_1(i) \in \mathbb{R}$)

- ▶ Note that $i \not\in K$ (as then $\sigma_1(i)^2 = -1$ but $\sigma_1(i) \in \mathbb{R}$)
- $\blacktriangleright \text{ Let } L_1 := K(i)$

- ▶ Note that $i \not\in K$ (as then $\sigma_1(i)^2 = -1$ but $\sigma_1(i) \in \mathbb{R}$)
- $\blacktriangleright \quad \text{Let } L_1 := K(i)$
- Note that $a^2 + b^2 = N_{L_1/K}(a + bi)$ (norm equation!)

- ▶ Note that $i \not\in K$ (as then $\sigma_1(i)^2 = -1$ but $\sigma_1(i) \in \mathbb{R}$)
- ightharpoonup Let $L_1 := K(i)$
- Note that $a^2 + b^2 = N_{L_1/K}(a + bi)$ (norm equation!)

Objective: Given
$$Q := B^{\top}B$$
, recover $(a + bi)\mathcal{O}_{L_1}$ $(B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2})$

- ▶ Note that $i \notin K$ (as then $\sigma_1(i)^2 = -1$ but $\sigma_1(i) \in \mathbb{R}$)
- ightharpoonup Let $L_1 := K(i)$
- Note that $a^2 + b^2 = N_{L_1/K}(a + bi)$ (norm equation!)

Objective: Given
$$Q := B^{\top}B$$
, recover $(a + bi)\mathcal{O}_{L_1}$ $(B = \begin{pmatrix} a & c \\ b & d \end{pmatrix}) \in \mathcal{O}_{K}^{2 \times 2})$

Notation:
$$Q = \begin{pmatrix} q_1 & q_2 \\ q_2 & q_4 \end{pmatrix}$$
, $z_1 = a + bi$, $z_2 = c + di$

Let
$$I_{\mathcal{M}}:=z_1\mathcal{O}_{L_1}+z_2\mathcal{O}_{L_1}$$
, then

$$z_1(\det(B)i+q_2)=q_1z_2,$$

and
$$z_1\mathcal{O}_{L_1}=I_\mathcal{M}\cap z_1z_2^{-1}I_\mathcal{M}=I_\mathcal{M}\cap q_1(\det(B)i+q_2)^{-1}I_\mathcal{M}$$
.

Notation:
$$K = \mathbb{Q}(\alpha_{r_1+1}), \sigma_1, \ldots, \sigma_d, L_1 = K(i)$$

lacksquare L_1 has embeddings $\sigma_{m{k},\pm}$ given by

$$\sigma_{k,\pm}(a+bi) = \sigma_k(a) \pm i\sigma_k(b)$$
 for $k=1,\ldots,d,\pm\in\{+,-\}$.

Notation:
$$K = \mathbb{Q}(\alpha_{r_1+1}), \sigma_1, \ldots, \sigma_d, L_1 = K(i)$$

lacksquare L_1 has embeddings $\sigma_{k,\pm}$ given by

$$\sigma_{k,\pm}(a+bi) = \sigma_k(a) \pm i\sigma_k(b)$$
 for $k=1,\ldots,d,\pm\in\{+,-\}$.

▶ Goal: recover (some) $|\sigma_{k,\pm}(z_1)|$ (where $z_1 = a + bi$)

Notation:
$$K = \mathbb{Q}(\alpha_{r_1+1}), \sigma_1, \ldots, \sigma_d, L_1 = K(i)$$

ightharpoonup L has embeddings $\sigma_{k,\pm}$ given by

$$\sigma_{k,\pm}(a+bi) = \sigma_k(a) \pm i\sigma_k(b)$$
 for $k=1,\ldots,d,\pm\in\{+,-\}$.

- ▶ Goal: recover (some) $|\sigma_{k,\pm}(z_1)|$ (where $z_1 = a + bi$)
- We know $\delta_k := \sigma_k(a)^2 + \sigma_k(b)^2$ and $\gamma_k := |\sigma_k(a)|^2 + |\sigma_k(b)|^2$

Notation:
$$K = \mathbb{Q}(\alpha_{r_1+1}), \sigma_1, \ldots, \sigma_d, L_1 = K(i)$$

ightharpoonup L has embeddings $\sigma_{k,\pm}$ given by

$$\sigma_{k,\pm}(a+bi) = \sigma_k(a) \pm i\sigma_k(b)$$
 for $k=1,\ldots,d,\pm\in\{+,-\}.$

- ▶ Goal: recover (some) $|\sigma_{k,\pm}(z_1)|$ (where $z_1 = a + bi$)
- We know $\delta_k := \sigma_k(a)^2 + \sigma_k(b)^2$ and $\gamma_k := |\sigma_k(a)|^2 + |\sigma_k(b)|^2$
- ▶ For real embedding $\sigma_k(K) \subset \mathbb{R}$, we have

$$|\sigma_{k,\pm}(z_1)|^2 = |\sigma_k(a) \pm i\sigma_k(b)|^2 = \sigma_k(a^2 + b^2)$$

Notation:
$$K = \mathbb{Q}(\alpha_{r_1+1}), \sigma_1, \ldots, \sigma_d, L_1 = K(i)$$

ightharpoonup L₁ has embeddings $\sigma_{k,\pm}$ given by

$$\sigma_{k,\pm}(a+bi)=\sigma_k(a)\pm i\sigma_k(b) \quad \text{ for } k=1,\ldots,d,\pm\in\{+,-\}.$$

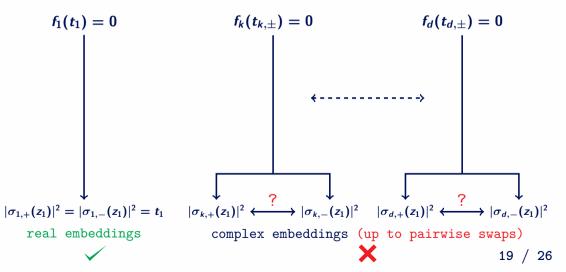
- ▶ Goal: recover (some) $|\sigma_{k,\pm}(z_1)|$ (where $z_1 = a + bi$)
- We know $\delta_k := \sigma_k(a)^2 + \sigma_k(b)^2$ and $\gamma_k := |\sigma_k(a)|^2 + |\sigma_k(b)|^2$
- ▶ For real embedding $\sigma_k(K) \subset \mathbb{R}$, we have

$$|\sigma_{k,\pm}(z_1)|^2 = |\sigma_k(a) \pm i\sigma_k(b)|^2 = \sigma_k(a^2 + b^2)$$

The polynomial $f(t)=t^2-2\gamma_k t+|\delta_k|^2,$

has real roots $\{|\sigma_{k,+}(z_1)|^2, |\sigma_{k,-}(z_1)|^2\}$.

$$f_k(t) = t^2 - 2(|\sigma_k(a)|^2 + |\sigma_k(b)|^2) + |\sigma_k(a^2 + b^2)|^2$$



(3) Absolute embeddings (if 2-transitive)

```
Notation: K = \mathbb{Q}(\alpha_{r_1+1}), roots \alpha_1, \ldots, \alpha_d, embeddings \sigma_k : \alpha_{r_1+1} \mapsto \alpha_k
```

▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)

```
Notation: K = \mathbb{Q}(\alpha_{r_1+1}), roots \alpha_1, \ldots, \alpha_d, embeddings \sigma_k : \alpha_{r_1+1} \mapsto \alpha_k
```

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields

Notation: $K = \mathbb{Q}(\alpha_{r_1+1})$, roots $\alpha_1, \ldots, \alpha_d$, embeddings $\sigma_k : \alpha_{r_1+1} \mapsto \alpha_k$

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields
- $ightharpoonup K_2 := \mathbb{Q}(lpha_{r_1+1}, \overline{lpha_{r_1+1}})$ is a degree d-1 extension of K.

Notation: $K = \mathbb{Q}(\alpha_{r_1+1})$, roots $\alpha_1, \ldots, \alpha_d$, embeddings $\sigma_k : \alpha_{r_1+1} \mapsto \alpha_k$

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields
- ullet $\mathcal{K}_2 := \mathbb{Q}(lpha_{r_1+1}, \overline{lpha_{r_1+1}})$ is a degree d-1 extension of \mathcal{K} .
- $a^2 + b^2, \overline{a}a + \overline{b}b \in K_2$

Notation: $K = \mathbb{Q}(\alpha_{r_1+1})$, roots $\alpha_1, \ldots, \alpha_d$, embeddings $\sigma_k : \alpha_{r_1+1} \mapsto \alpha_k$

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields
- ullet $\mathcal{K}_2 := \mathbb{Q}(lpha_{r_1+1}, \overline{lpha_{r_1+1}})$ is a degree d-1 extension of \mathcal{K} .
- $a^2 + b^2, \overline{a}a + \overline{b}b \in K_2$
- ▶ K_2 has d(d-1) complex embeddings

$$\sigma_{k,l}:\alpha_{r_1+1}\mapsto\alpha_k,\overline{\alpha_{r_1+1}}\mapsto\alpha_l$$

Notation: $K = \mathbb{Q}(\alpha_{r_1+1})$, roots $\alpha_1, \ldots, \alpha_d$, embeddings $\sigma_k : \alpha_{r_1+1} \mapsto \alpha_k$

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields
- ullet $\mathcal{K}_2 := \mathbb{Q}(lpha_{r_1+1}, \overline{lpha_{r_1+1}})$ is a degree d-1 extension of \mathcal{K} .
- $\qquad \qquad a^2+b^2, \overline{a}a+\overline{b}b\in K_2$
- ▶ K_2 has d(d-1) complex embeddings

$$\sigma_{k,l}:\alpha_{r_1+1}\mapsto\alpha_k,\overline{\alpha_{r_1+1}}\mapsto\alpha_l$$

 $L_2 = K_2(i), \ \sigma_{k,l,\pm} : i \mapsto \pm i \quad (\text{if } i \notin K_2)$

Notation: $K = \mathbb{Q}(\alpha_{r_1+1})$, roots $\alpha_1, \ldots, \alpha_d$, embeddings $\sigma_k : \alpha_{r_1+1} \mapsto \alpha_k$

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields
- ullet $\mathcal{K}_2 := \mathbb{Q}(lpha_{r_1+1}, \overline{lpha_{r_1+1}})$ is a degree d-1 extension of \mathcal{K} .
- $\qquad \qquad a^2 + b^2, \overline{a}a + \overline{b}b \in K_2$
- ▶ K_2 has d(d-1) complex embeddings

$$\sigma_{k,l}:\alpha_{r_1+1}\mapsto\alpha_k,\overline{\alpha_{r_1+1}}\mapsto\alpha_l$$

 $L_2 = K_2(i), \ \sigma_{k,l,\pm} : i \mapsto \pm i \quad (\text{if } i \not\in K_2)$

Idea: find root $\overline{z_1}z_1 \in L_2$ of $f(t) = t^2 - 2(\overline{a}a + \overline{b}b) + (a^2 + b^2)$

Notation: $K = \mathbb{Q}(\alpha_{r_1+1})$, roots $\alpha_1, \ldots, \alpha_d$, embeddings $\sigma_k : \alpha_{r_1+1} \mapsto \alpha_k$

- ▶ Assume Gal(P) is 2-transitive (any pair of roots maps to any pair)
- ▶ True for NTRU Prime and most number fields
- $kappa K_2 := \mathbb{Q}(\alpha_{r_1+1}, \overline{\alpha_{r_1+1}})$ is a degree d-1 extension of K.
- $a^2 + b^2, \overline{a}a + \overline{b}b \in K_2$
- ightharpoonup K_2 has d(d-1) complex embeddings

$$\sigma_{k,l}:\alpha_{r_1+1}\mapsto\alpha_k,\overline{\alpha_{r_1+1}}\mapsto\alpha_l$$

$$L_2 = K_2(i), \ \sigma_{k,l,\pm} : i \mapsto \pm i \quad (\text{if } i \notin K_2)$$

Idea: find root
$$\overline{z_1}z_1 \in L_2$$
 of $f(t) = t^2 - 2(\overline{a}a + \overline{b}b) + (a^2 + b^2)$

Then use embeddings to obtain $|\sigma_{k,\pm}(z_1)|$ for all k and $\pm\in\{+,0\}$:

$$|\sigma_{k,\pm}(z_1)|^2 = \sigma_{k,\overline{k},\pm}(\overline{z_1}z_1)$$

$$f(t) = t^2 - 2(\overline{a}a + \overline{b}b) + (a^2 + b^2)$$

$$f(t) = 0 \text{ for } t \in L_2$$

$$\downarrow \qquad \qquad ?$$

$$\overline{z_1}z_1 \longleftrightarrow \overline{z_2}z_2 \quad \text{(where } z_- = a - bi\text{)}$$

$$|\sigma_{k,+}(z_1)|^2 \quad |\sigma_{k,-}(z_1)|^2 \quad |\sigma_{d,+}(z_1)|^2 \quad |\sigma_{d,-}(z_1)|^2$$

$$f(t) = t^2 - 2(\overline{a}a + \overline{b}b) + (a^2 + b^2)$$

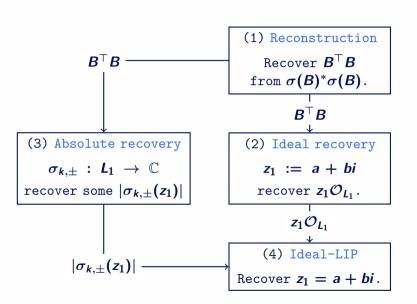
$$f(t) = 0 \text{ for } t \in L_2$$

$$\overline{z_1}z_1 \longleftrightarrow \overline{z_-}z_- \text{ (where } z_- = a - bi)$$

$$|\sigma_{k,+}(z_1)|^2 \quad |\sigma_{k,-}(z_1)|^2 \quad |\sigma_{d,+}(z_1)|^2 \quad |\sigma_{d,-}(z_1)|^2$$

$$\text{only one (optional) choice}$$

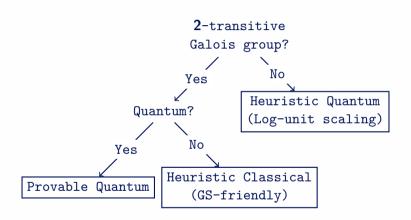
Plan of attack



(where
$$B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_K^{2 \times 2}$$

(where $L_1 = K(i)$)

(4) Ideal-LIP overview



```
From (2): (generators of) z_1\mathcal{O}_{L_1}
From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1} From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)| rank-1 module-LIP!
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}
From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|
\boxed{\text{rank-1 module-LIP!}}
```

Final step: use generalized Gentry-Szydlo algorithm to recover \emph{z}_1

```
From (2): (generators of) z_1\mathcal{O}_{L_1} From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)| \boxed{ \text{rank-1 module-LIP!} }
```

Final step: use generalized Gentry-Szydlo algorithm to recover z_1 Heuristic assumption: all number fields are GS-friendly.

```
From (2): (generators of) z_1\mathcal{O}_{L_1} From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)| rank-1 module-LIP!
```

Final step: use generalized Gentry-Szydlo algorithm to recover z_1 Heuristic assumption: all number fields are GS-friendly.

```
From (2): (generators of) z_1\mathcal{O}_{L_1}

From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|

1. Compute principal generator g\in\mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}
From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|

1. Compute principal generator g\in\mathcal{O}_{L_1} of z_1\mathcal{O}_{\mathcal{K}_1} (quantum)
```

2. Compute generators of $\mathcal{O}_{L_1}^*$ and basis of $\mathsf{Log}(|\sigma_{L_1}(\mathcal{O}_{L_1}^*)|)$

(quantum)

```
From (2): (generators of) z_1\mathcal{O}_{L_1}

From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|

1. Compute principal generator g \in \mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)

2. Compute generators of \mathcal{O}_{L_1}^* and basis of \text{Log}(|\sigma_{L_1}(\mathcal{O}_{L_1}^*)|) (quantum)

3. Then g \cdot z_1^{-1} = u for a unit u \in \mathcal{O}_{L_1}^*
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}

From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|

1. Compute principal generator g\in\mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)

2. Compute generators of \mathcal{O}_{L_1}^* and basis of \mathsf{Log}(|\sigma_{L_1}(\mathcal{O}_{L_1}^*)|) (quantum)

3. Then g\cdot z_1^{-1}=u for a unit u\in\mathcal{O}_{L_1}^*

4. Then \mathsf{Log}(|\sigma_{L_1}(g)|)-\mathsf{Log}(|\sigma_{L_1}(z_1)|)=\mathsf{Log}(|\sigma_{L_1}(u)|)
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}

From (3): all absolute embeddings |\sigma_{k,\pm}(z_1)|

1. Compute principal generator g \in \mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)

2. Compute generators of \mathcal{O}_{L_1}^* and basis of \mathsf{Log}(|\sigma_{L_1}(\mathcal{O}_{L_1}^*)|) (quantum)

3. Then g \cdot z_1^{-1} = u for a unit u \in \mathcal{O}_{L_1}^*

4. Then \mathsf{Log}(|\sigma_{L_1}(g)|) - \mathsf{Log}(|\sigma_{L_1}(z_1)|) = \mathsf{Log}(|\sigma_{L_1}(u)|)

5. Recover u from \mathsf{Log}(|\sigma(u)|) (up to a root of unity)
```

```
From (2): (generators of) z_1\mathcal{O}_{I_1}
From (3): all absolute embeddings |\sigma_{k,+}(z_1)|
 1. Compute principal generator g \in \mathcal{O}_{L_1} of z_1 \mathcal{O}_{K_1} (quantum)
 2. Compute generators of \mathcal{O}_{L_1}^* and basis of \text{Log}(|\sigma_{L_1}(\mathcal{O}_{L_1}^*)|)
                                                                                    (quantum)
 3. Then \mathbf{g} \cdot \mathbf{z}_1^{-1} = \mathbf{u} for a unit \mathbf{u} \in \mathcal{O}_{\mathbf{I}_1}^*
 4. Then Log(|\sigma_{L_1}(g)|) - Log(|\sigma_{L_1}(z_1)|) = Log(|\sigma_{L_1}(u)|)
 5. Recover u from Log(|\sigma(u)|) (up to a root of unity)
Main result (2): provable quantum if 2-transitive ----
 Let K = \mathbb{Q}[X]/P(X) be a number field with at least one real embedding
 and such that Gal(P) acts 2-transitively on the roots of P. Then
 there is a polynomial time quantum algorithm that solves the rank-2
 module-LIP problem on \mathcal{O}_{\kappa}.
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}
From (3): one absolute embedding |\sigma_{1,+}(z_1)| (actually two)
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}
From (3): one absolute embedding |\sigma_{1,+}(z_1)| (actually two)

1. Compute principal generator g\in\mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)

2. Compute generators of \mathcal{O}_{L_1}^* and basis of \text{Log}(|\sigma(\mathcal{O}_{L_1}^*)|) (quantum)

3. Then g\cdot z_1^{-1}=u for a unit u\in\mathcal{O}_{L_1}^*
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}

From (3): one absolute embedding |\sigma_{1,+}(z_1)| (actually two)

1. Compute principal generator g \in \mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)

2. Compute generators of \mathcal{O}_{L_1}^* and basis of \text{Log}(|\sigma(\mathcal{O}_{L_1}^*)|) (quantum)

3. Then g \cdot z_1^{-1} = u for a unit u \in \mathcal{O}_{L_1}^*

4. Then \text{log}(|\sigma_{1,+}(g)|) - \text{log}(|\sigma_{1,+}(z_1)|) = \text{log}(|\sigma_{1,+}(u)|)
```

```
From (2): (generators of) z_1\mathcal{O}_{L_1}

From (3): one absolute embedding |\sigma_{1,+}(z_1)| (actually two)

1. Compute principal generator g \in \mathcal{O}_{L_1} of z_1\mathcal{O}_{K_1} (quantum)

2. Compute generators of \mathcal{O}_{L_1}^* and basis of \text{Log}(|\sigma(\mathcal{O}_{L_1}^*)|) (quantum)

3. Then g \cdot z_1^{-1} = u for a unit u \in \mathcal{O}_{L_1}^*

4. Then \text{log}(|\sigma_{1,+}(g)|) - \text{log}(|\sigma_{1,+}(z_1)|) = \text{log}(|\sigma_{1,+}(u)|)

5. Recover u from \text{log}(|\sigma_{1,+}(u)|) (heuristic!)
```

```
From (2): (generators of) z_1\mathcal{O}_{I_1}
From (3): one absolute embedding |\sigma_{1,+}(z_1)|
                                                            (actually two)
 1. Compute principal generator g \in \mathcal{O}_{L_1} of z_1 \mathcal{O}_{K_1} (quantum)
 2. Compute generators of \mathcal{O}_{I_1}^* and basis of \text{Log}(|\sigma(\mathcal{O}_{I_1}^*)|)
                                                                             (quantum)
 3. Then g \cdot z_1^{-1} = u for a unit u \in \mathcal{O}_L^*
 4. Then \log(|\sigma_{1,+}(g)|) - \log(|\sigma_{1,+}(z_1)|) = \log(|\sigma_{1,+}(u)|)
 5. Recover u from \log(|\sigma_{1,+}(u)|) (heuristic!)
Main result (3): heuristic quantum -----
 Let K = \mathbb{Q}[X]/P(X) be a number field with at least one real
 embedding. Then there is a heuristic polynomial time quantum
 algorithm that solves the rank-2 module-LIP problem on \mathcal{O}_{\kappa}.
```

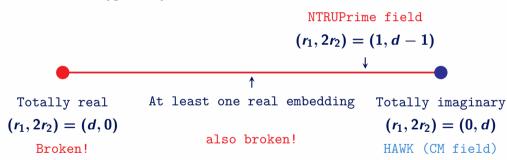
Conclusion

- ▶ Security of rank-2 module-LIP depends on the number field
- ▶ Real embeddings can cause problems

Conclusion

- ▶ Security of rank-2 module-LIP depends on the number field
- ▶ Real embeddings can cause problems

New state of cryptanalysis:



Conclusion

- ▶ Security of rank-2 module-LIP depends on the number field
- ▶ Real embeddings can cause problems

New state of cryptanalysis:

