The Lattice Isomorphism Problem

algorithms and invariants

universite
*BORDEAUX

Lattice
R-linearly independent by,...,b, € R”
L(B) :={>;xibi: x € Z"} C R",

basis B, gram matrix G := B'B

1/ 20

Lattice
R-linearly independent by,...,b, € R”
L(B) :={>;xibi: x € Z"} C R",

basis B, gram matrix G := B'B

© © © © ® Lattice volume
b, det(L) := vol(R"/L) = | det(B)|
e [E [[
e ¢ ©
0 by

1/ 20

Lattice
R-linearly independent by,...,b, € R”
L(B) :={>;xibi: x € Z"} C R",

basis B, gram matrix G := B'B

°) Lattice volume
det(L) := vol(R"/L) = | det(B)|
([([[J
Infinitely many distinct bases
° ° B =B-U, G=UTGU,
° ° ° ° ° ° for U € GL,(Z).

1/ 20

7

Lattices

Lattice
R-linearly independent by,...,b, € R”
L(B) :={>ixibi: x € Z"} CR",

basis B, gram matrix G := B'B

Lattice volume
det(L) := vol(R"/L) = | det(B)|

Infinitely many distinct bases
B=B-U, G=U"GU,
for U € GL,(Z).

1/ 20

Lattice Isomorphism Problem (LIP)

£(B)
[) [) [) [] [} [} [] OL [) [) [) [] [} [}

Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem (LIP)

£(B)
L] ° L] [] [] [] [] /_b L] L] [] [] [] []
0

LIP: given isomorphic L3, L,
compute O € O,(R) s.t. L2 =0-L;.

Lattice Isomorphism Problem (LIP)

£(B)

/.

0

LIP: given isomorphic L3, L,
compute O € O,(R) s.t. L2 =0-L;.

2 /20

Lattice Isomorphism Problem

L(B1) = L(B)

<
O-L(B1) =L(By) for some O € O4(R)
<
O0-B-U=8B, for some O € O4(R), U € GL4(Z)

3/ 20

Lattice Isomorphism Problem

L(B1) = L(B)

<
O-L(B1) =L(By) for some O € O4(R)
<
O0-B-U=8B, for some O € O4(R), U € GL4(Z)

» If either O or U is trivial: linear algebra.

3/ 20

Lattice Isomorphism Problem

L(B1) = £(By)

<
O-L(B1) = L(By) for some O € O4(R)
<~
O0-B;-U=8B, for some O € O4(R), U € GL4(Z)
<~
U'BiBU = B;B, for some U € GLy4(Z)

——
gram matrix

» If either O or U is trivial: linear algebra.
» Use O'O =1 to remove the orthonormal transformation.

3/ 20

Lattice Isomorphism Problem

L(B1) = £(By)

<
O-L(B1) = L(By) for some O € O4(R)
<~
O0-B;-U=8B, for some O € O4(R), U € GL4(Z)
<~
U'BiBU = B;B, for some U € GLy4(Z)
——

gram matrix

» If either O or U is trivial: linear algebra.
» Use 0'O =1 to remove the orthonormal transformation.
» We restrict to integer or rational gram matrices G := B'B.

3/ 20

Lattice Isomorphism Problem

L(B1) = £(By)

<
O-L(B1) = L(By) for some O € O4(R)
<~
O0-B;-U=8B, for some O € O4(R), U € GL4(Z)
<~
U'BiBU = B;B, for some U € GLy4(Z)

——
gram matrix

If either O or U is trivial: linear algebra.

Use O'O =1 to remove the orthonormal transformation.

We restrict to integer or rational gram matrices G := B'B.
Solution unique up to Aut(L) ={0 € O,(R): 0-L =L}.

vV vVvYyy

3/ 20

Encryption scheme from LIP (informal)

Decodable lattice Bad basis of rotation
[] [] [] [] ([J

[[[[[] Oc On(R)
e
(Secret key)

LIP

Encryption scheme from LIP (informal)

Decodable lattice Bad basis of rotation

[[[[[] Oc OH(R)
(Secret ke&)

Hides (decoding) structure of L
4 / 20

Encryption scheme from LIP (informal)

Decodable lattice Bad basis of rotation
. [J
° ° ° ° ° g ‘
[] ° ¢
[
° ° ° ° ° ° ®
[]
[] PY °
[] [] [] [] o (]
0 € 0,(R) ° o
- g °
S S 0. A A (Secret key) o S .
() 0 A~
» °
[] [] [] [J ([J []
o °
® []
e o o o o ° =
° °

Encryption scheme from LIP (informal)

Decodable lattice Bad basis of rotation
. - [J
° ° ° ° ° L4 ‘
° * ¢
°
° ° ° ° ° ° ®
°
° ° o
° ° ° ° ° °
0 € 0,(R) ° o
- g °
S S S A A (Secret key) o . S .
0 o® 0
p C=m+e ®
e o o o o * °
o °
o °
e o o o o ° =
° °

Encrypt by adding a small error

Encryption scheme from LIP (informal)

Decodable lattice

Bad basis of rotation

®
[] [] [] [] (] (
[]
o
e o | o | o | o 1
m’ \¢ ([]
° /}c, e o o 0 € O(R) :
7 ‘\
S f(. ® S A (Secret key) \ @
0 (
®
([] [] ([] ([] ®
[] \
o o | o | o o ° .\\\ -~
\ : .
Decrypt using decoding algorithm

4 / 20

Cryptography from LIP

» LIP as a new hardness assumption

5/ 20

Cryptography from LIP

» LIP as a new hardness assumption

,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----

Use LIP to hide a remarkable lattice:
» Identification, Encryption and Signature scheme

-
-

5/ 20

Cryptography from LIP

» LIP as a new hardness assumption

,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----

Use LIP to hide a remarkable lattice:
» Identification, Encryption and Signature scheme

-
-

7 [Bennett et al.: Just how hard are rotations of Z”’?J -------------- -

i » Encryption scheme based on LIP on Z",

5/ 20

Cryptography from LIP

» LIP as a new hardness assumption

,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----

Use LIP to hide a remarkable lattice:
» Identification, Encryption and Signature scheme

-
-

;[Bennett et al.: Just how hard are rotations of Z”?} -------------- =
i » Encryption scheme based on LIP on Z", !
N e o e o e o e o m m m m E e o e e e e e e e e e e e = = 4
v[Ducas et al.: HAWK scheme} -------------------------------------- -

i Efficient signature scheme based on module-LIP on Z"
i » submitted to NIST call for additional signatures

__

» Several others works using LIP appeared recently

Algorithms for solving LIP

Main strategy for solving LIP

Goal: given isomorphic L£,L’ C R", compute O € O,(R) s.t. L'=0-L.

6 / 20

Main strategy for solving LIP

Goal: given isomorphic L£,L’ C R", compute O € O,(R) s.t. L'=0-L.
Idea: isometries preserve lengths and inner products

—> short(est) vectors map to short(est) vectors

6 / 20

Main strategy for solving LIP

Goal: given isomorphic L£,L’ C R", compute O € O,(R) s.t. L'=0-L.
Idea: isometries preserve lengths and inner products

—> short(est) vectors map to short(est) vectors

Step 1: Step 2:
compute short vectors compute isometries between them

6 / 20

Characteristic Vector Set

«[Definition: characteristic vector set}
1

V:L— V(L) C LisacCVsif

[J [] ([] (E i
E (1) V(L) generates L. :
¢ o e o PUOOZOVOTOCHD.
® ® ® ([] ®
0
[] [] [] []
® ([] ® ([] ®

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}
1

V:L— V(L) C LisacCVsif

[J [] ([] (E i
E (1) V(L) generates L. :
¢ @ e e PMOOZOVOTOCHD:
® ® ® \ ®
0
[] [] ° []
[4 ([] ® ([] ®

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}
V:L— V(L) C L isacCVsif
(1) V(L) generates L. .

(2) V(0- L) = 0-V(L) VO € Oy(R).

Example:

» Property (2) is satisfied e.g. by
Min(L,A) :={x € L: || L] < A}.

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}I
V:L— V(L) C L isacCVsif
(1) V(L) generates L. .

(2) V(0- L) = 0-V(L) VO € Oy(R).

Example:

» Property (2) is satisfied e.g. by
Min(L,A) :={x € L: ||L| < A}.

» Vaus(L) :=Min(L, Amin(L)) with Amin(L)

minimal s.t. (1) is satisfied.

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}I
V:L— V(L) C L isacCVsif
(1) V(L) generates L. .

(2) V(0- L) = 0-V(L) VO € Oy(R).

Example:

» Property (2) is satisfied e.g. by
Min(L,A) :={x € L: || L] < A}.

» Vaus(L) :=Min(L, Amin(L)) with Amin(L)
minimal s.t. (1) is satisfied.

» Vir(£) :=

{Voronoi relevant vectors of L}.

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}I
V:L— V(L) C LisacCVsif :
(1) V(L) generates L. E
(2) V(0-L)=0-V(L) YO € Ou(R).

Example:

» Property (2) is satisfied e.g. by
Min(L,A) :={x € L: ||L| < A}.

» Vaus(L) :=Min(L, Amin(L)) with Amin(L)
minimal s.t. (1) is satisfied.

» Vir(£) :=
{Voronoi relevant vectors of L}.

» Complexity: 29(") time and memory.

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}
V:L— V(L) C LisacCVsif :
(1) V(L) generates L. E
(2) V(0-L)=0-V(L) YO € Ou(R).

» Can be used as a proxy:

Lr=0-L4
p—
V(£2) = 0-V(L1)

as a Set

7/ 20

Characteristic Vector Set

«[Definition: characteristic vector set}
V:L— V(L) C LisacCVsif :
(1) V(L) generates L. E
(2) V(0-L)=0-V(L) YO € Ou(R).

» Can be used as a proxy:

Lr=0-L4
p—
V(£2) = 0-V(L1)

as a Set

» Goal: find a limear isometry

O: V(El) — V([,z). 7 / 20

LIP via Graph Isomorphism

» isometry O:V(L2) — V(L1)

preserves pairwise inner products.

8 / 20

LIP via Graph Isomorphism

» isometry O: V(ﬁz) — V(El)

preserves pairwise inner products.

V2

8 / 20

LIP via Graph Isomorphism

» isometry O: V(ﬁz) — V(El)

preserves pairwise inner products.

[[va]l
A

‘\‘(Vh v2)
A

0 vl

8 / 20

LIP via Graph Isomorphism

» isometry O:V(L2) — V(L1)
preserves pairwise inner products.
» Idea: this condition is sufficient.
vz

A

‘\‘(Vh v2)
A

0 vl

8 / 20

-1
\‘ ‘lx’\ /\‘(l I/

LIP via Graph Isomorphism

isometry O : V(L) — V(L1)
preserves pairwise inner products.
Idea: this condition is sufficient.
Let Gy) = (V,w) be a complete
weighted graph with:

» V:i=V(L)={vi,...,w}

> w(vi,v) == (vi,v;) Vv, € V.

8 / 20

LIP via Graph Isomorphism

» isometry O: V(ﬁz) — V(El)
preserves pairwise inner products.
Idea: this condition is sufficient.
Let Gy) = (V,w) be a complete
s 2 weighted graph with:
NS TN » V:i=V(L)={v1,...,w}
el N PS > w(vi,v) == (vi,v;) Vv, € V.

NS \ [» Then:

) L1 = Lo = Gy(zy) = Gy(cy)

8 / 20

LIP via Graph Isomorphism

» isometry O:V(L2) — V(L1)
preserves pairwise inner products.
Idea: this condition is sufficient.
Let Gy) = (V,w) be a complete
weighted graph with:

» V:i=V(L)={vi,...,w}
> w(vi,v) == (vi,v;) Vv, € V.
» Then:

L1 = Lo <= Gy(r,) = Gy(ry)

8 / 20

LIP via Graph Isomorphism

» isometry O: V(ﬁz) — V(El)
preserves pairwise inner products.
Idea: this condition is sufficient.
Let Gy) = (V,w) be a complete
weighted graph with:

» V:i=V(L)={vi,...,w}
> w(vi,v) == (vi,v;) Vv, € V.
» Then:

L1 = Lo <= Gy(r,) = Gy(ry)

Time complexity: » Problem: possibly |[V(L£)| > 29",
exp(log(|V(£)])°M) -
= O(exp(n®)

8 / 20

LIP via Graph Isomorphism

» isometry O: V(ﬁz) — V(El)
preserves pairwise inner products.
Idea: this condition is sufficient.

Let Gy) = (V,w) be a complete
weighted graph with:

» V:i=V(L)={vi,...,w}
> w(vi,v) == (vi,v;) Vv, € V.
» Then:

L1 = Lo <= Gy(r,) = Gy(ry)

Time complexity: » Problem: possibly |[V(L£)| > 29",
exp(log(|V(£)])°M) . . .
_ O(exp(no(l)) » Canonical graph labeling algorithms

—> canonical form for LIP.

(Dutour Sikirié-Haensch-Voight-vW 2020) 8 / 20

Plesken-Souvignier (1997)

» Idea: linear isometry f:V(L1) — V(L2) is fully determined by
image on n independent vectors.

9 / 20

Plesken-Souvignier (1997)

» Idea: linear isometry f:V(L1) — V(L2) is fully determined by
image on n independent vectors.
» Let vi,...,v, € V(L1) be independent.

9 / 20

Plesken-Souvignier (1997)
Idea: linear isometry f :V(L1) — V(L2) is fully determined by
image on n independent vectors.

Let vi,...,Vs € V(L1) be independent.
Backtrack search to determine (compatible) images

F(v1), ..., F(vn) € V(L2).

9 / 20

Plesken-Souvignier (1997)

Idea: linear isometry f :V(L1) — V(L2) is fully determined by
image on n independent vectors.

Let vi,...,Vs € V(L1) be independent.

Backtrack search to determine (compatible) images

F(v1), ..., F(vn) € V(L2).

Prune search tree: once f(v;) = w; for i =1,...,k, then

(F(vit1), wi) = (F(vk41), F(vi)) = (vk+1, V),

so possible images of wvk41 are limited.
9 / 20

Plesken-Souvignier (1997)

» Idea: linear isometry f:V(L1) — V(L2) is fully determined by
image on n independent vectors.

» Let vi,...,v, € V(£L1) be independent.

» Backtrack search to determine (compatible) images

f(vi),...,f(vn) € V(L2).

» Prune search tree: once f(v;) =w; for i=1,...,k, then
(F(viit1)s wi) = (F(vit1)s F(vi)) = (i1, V),

so possible images of w41 are limited.

» Use more invariants to limit search-tree.

9 / 20

Plesken-Souvignier (1997)

» Idea: linear isometry f:V(L1) — V(L2) is fully determined by
image on n independent vectors.

» Let vi,...,v, € V(£L1) be independent.
» Backtrack search to determine (compatible) images

f(vi),...,f(vn) € V(L2).

» Prune search tree: once f(v;) =w; for i=1,...,k, then

(F(vicy1), wi) = (F(vir1), F(vi)) = (Viey1, v),

so possible images of w41 are limited.

» Use more invariants to limit search-tree.

IV(L)I)> _

» Good in practice, but tree can be as large as O (n! - (o

9 / 20

Plesken-Souvignier (1997)

» Idea: linear isometry f:V(L1) — V(L2) is fully determined by
image on n independent vectors.

» Let vi,...,v, € V(£L1) be independent.
» Backtrack search to determine (compatible) images

f(vi),...,f(vn) € V(L2).

» Prune search tree: once f(v;) =w; for i=1,...,k, then

(F(vicy1), wi) = (F(vir1), F(vi)) = (Viey1, v),

so possible images of w41 are limited.

» Use more invariants to limit search-tree.

n

IV(L)I)> _

» Good in practice, but tree can be as large as O (n! - (

» If V(L) = 29" then 20(") in yorst-case.
9 / 20

Haviv-Regev (2014)

» Dual lattice:

L' :={weR":VveL ({wv)ecZ}

10 / 20

Haviv-Regev (2014)

» Dual lattice:

:) k » L :={weR":VveL{wv) e}
' * N . .
AY Y \ N
AY Y \ N
\ * - A 2
e 2))
A% \ \ N
A \ \ N
N : 1 N
A Y Y \ N
. v llwll g, X
5 . 'f . |
A Y ‘kf \ N
A% by N N
* . awo
A Y \ N
AY Y \ .
p A
S . .)
. (Y 0 . .
A Y \ .
A Y Y \ N
A Y \ N N
AY Y N N
* A%
\ b Q A
A \ . N
AY Y . .
A Y Y \ N
AY \ N N
AY Y N N
3 1 e 3 3
‘e 8 ‘e § ‘e N " 7z
R A AN N °,
AN B Yy
A\ AN A\ N\ v N

v 10 / 20
\ o
» \o v

Haviv-Regev (2014)

» Dual lattice:
L' :={weR":VveL ({wv)ecZ}

» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).

10 / 20

Haviv-Regev (2014)

» Dual lattice:
L' :={weR":VveL ({wv)ecZ}

» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).

10 / 20

Haviv-Regev (2014)

» Dual lattice:
L' :={weR":VveL ({wv)ecZ}
» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).
» If wp = Ow;, then V(L2) = 0-V(L1)

(as ordered lists) =—> recover O.

10 / 20

Haviv-Regev (2014)

» Dual lattice:
L :={weR":VveL{wv) e}
» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).
» If wp = Ow;, then V(L2) = 0-V(L1)
(as ordered lists) =— recover O.
» Isolation Lemma: such a w; € L}
exists among the n9(" shortest
vectors of L].

10 / 20

Haviv-Regev (2014)

» Dual lattice:
L' :={weR":VveL ({wv)ecZ}
» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).
» If wp = Ow;, then V(L2) = 0-V(L1)
(as ordered lists) == recover O.
» Isolation Lemma: such a w; € L}
exists among the n9(" shortest
vectors of L].
» Haviv-Regev algorithm (informal):
1. Compute V(£;) and n9" shortest

vecs §; C L}
2. Isolate wy € S, Mél),...,uéﬂn €S,.
Recover isometries from WZ(’) = Ow;.

Haviv-Regev (2014)

» Dual lattice:
L' :={weR":VveL ({wv)ecZ}
» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).
» If wp = Ow;, then V(L2) = 0-V(L1)
(as ordered lists) == recover O.
» Isolation Lemma: such a w; € L}
exists among the n9(" shortest
vectors of L].
» Haviv-Regev algorithm (informal):
1. Compute V(£;) and n9" shortest

o) vecs §; C L}

p . . . n

Time complexity: n y 2. Isolate wy € 51, wz(l), 300¢ W§N) €S,.
—_— . . (N _

0Q: Can we do better? (2O(n)) 3. Recover isometries from w,’ = Ow; .

Open Questions

Step 1: Step 2:
compute short vectors compute isometries between them

11 / 20

Open Questions

Step 1: Step 2:
compute short vectors compute isometries between them

,[Faster isometry finding:} =

E » Can we do step 2 in 20(n) time if searching for a single isometry?

Open Questions

Step 1: Step 2:
compute short vectors compute isometries between them

,[Faster isometry finding:} -,
1

E » Can we do step 2 in 20(n) time if searching for a single isometry?

N o m e e m o m m m o m o m o e e e e e e e e e e e e e e e e e e 4
,[Alternative approach?:] ... =

1
i » Can we solve LIP without first finding short vectors? !
Rttt el il re-/ 20

Invariants for LIP

LIP Variants

+(Definition: search LIP (SLIP) f======sssssssssssssooaaaaaooaae .

Given two isomorphic lattices L1, Ly, recover an orthonormal
transformation O € O,(R) such that O - L1 = L>.

12 / 20

LIP Variants

+(Definition: search LIP (SLIP) f======sssssssssssssooaaaaaooaae .

Given two isomorphic lattices L1, Ly, recover an orthonormal
transformation O € O,(R) such that O - L1 = L>.

-(Definition: decisional LIP (dLIP) f====sssssmmmmmmmmmmmmmcoeeee -

i Given two lattices L1, Ly, determine whether £1 = L, or not.

12 / 20

LIP Variants

+(Definition: search LIP (SLIP) f======sssssssssssssooaaaaaooaae .

Given two isomorphic lattices L1, Ly, recover an orthonormal
transformation O € O,(R) such that O - L1 = L>.

’ [Definition: decisional LIP (dLIP)} ------------------------------- -
i Given two lattices L1, Ly, determine whether £1 = L, or not. !
,[Definition: distinguish LIP (zxLIp)]

Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
Given L € [Lp], recover b.

12 / 20

LIP Variants

+(Definition: search LIP (SLIP) f======sssssssssssssooaaaaaooaae .

Given two isomorphic lattices L1, Ly, recover an orthonormal
transformation O € O,(R) such that O - L1 = L>.

’ [Definition: decisional LIP (dLIP)} ------------------------------- -
i Given two lattices L1, Ly, determine whether £1 = L, or not. !
,[Definition: distinguish LIP (zxLIp)]

Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
Given L € [Lp], recover b.

» Distinguishing variant is useful for security proofs:

one can replace [£1] by [£2] in security game.

12 / 20

Invariants

» Disclaimer: we only consider integral lattices (B'B € Z"*")

13 / 20

Invariants

» Disclaimer: we only consider integral lattices (B'B € Z"*")
Arithmetic Invariants (ari(L))

» det(L) = det(Lp).

» gcd(L) :=ged{(x,y) : x,y € L}

» parity par(L) = ged{||x||*: x € L}/ gcd(L)

13 / 20

Invariants

» Disclaimer: we only consider integral lattices (B'B € Z"*")
Arithmetic Invariants (ari(L))

» det(L) = det(Lp).

» gcd(L) :=ged{(x,y) : x,y € L}

» parity par(£) = ged{||x||?: x € £}/ ged(L)

» Equivalence over R D Z, U € GL,(R), R € {R,Q,Vp Q,,,Vp Zp}

Genus

13 / 20

Invariants

» Disclaimer: we only consider integral lattices (B'B € Z"*")

Arithmetic Invariants (ari(L))

» det(L) = det(Lp).

» gcd(L) :=ged{(x,y) : x,y € L}

» parity par(L) = ged{||x||*: x € L}/ gcd(L)

» Equivalence over R D Z, U € GL,(R), R € {R,Q,Vp Qp,Vp Zp}
——

Genus

If ari(£1) # ari(L2), then dLIP and ALIP with £1, Ly can be solved :
efficiently. E

Invariants

» Disclaimer: we only consider integral lattices (B'B € Z"*")

Arithmetic Invariants (ari(L))

» det(L) = det(Lp).

» gcd(L) :=ged{(x,y) : x,y € L}

» parity par(L) = ged{||x||*: x € L}/ gcd(L)

» Equivalence over R D Z, U € GL,(R), R € {R,Q,Vp Qp,Vp Zp}
——

Genus

If ari(£1) # ari(L2), then dLIP and ALIP with £1, Ly can be solved :
efficiently. E

= lattices must have same (efficiently computable) invariants

Genus

,[p—adic integers:] .. s

14 / 20

Genus

i=0
R N L L -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

14 / 20

Genus

i=0
R N L L -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank

14 / 20

Genus

i=0
LS R R e e e T e -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank
» Equivalent over Zp, <& Zp®Q L1 = Zp Q Lo

& UTGU = G; for U € GL,(Zp).

14 / 20

Genus

i=0
LS R R e e e T e -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank
» Equivalent over Zp, <& Zp®Q L1 = Zp Q Lo

& UTGU = G; for U € GL,(Zp).

» Covers all the other known arithmetic invariants*

14 / 20

Genus

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank
» Equivalent over Zp, <& Zp®Q L1 = Zp Q Lo

& UTGU = G; for U € GL,(Zp).
» Covers all the other known arithmetic invariants*

* (we assume here the genus does not split into multiple spinor genera)
14 / 20

How to compute genus equivalence?

» We consider p > 3.

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.
» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.
» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

» G =y, G’ if the above values match for all q = p'.

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.
» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

» G =y, G’ if the above values match for all q = p'.

» For p{det(G) we have dim(G;) = dim(G) and (%) = (detffc))

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.

» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

» G =y, G’ if the above values match for all q = p'.

» For p{det(G) we have dim(G;) = dim(G) and (%) = (detffc))

» So only have to consider p|det(G) (needs factorization)

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.

» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

» G =y, G’ if the above values match for all q = p'.

» For p{det(G) we have dim(G;) = dim(G) and (%) = (detTfG))
» So only have to consider p|det(G) (needs factorization)

» For p=2 block diagonalizable and a few additional rules.

15 / 20

How to compute genus equivalence?

» We consider p > 3.

» Idea: over Zp the gram matrix is efficiently diagonalizable.
>, GL® pG, ®p°G, B ... B p*G,

where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.

» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

» G =y, G’ if the above values match for all q = p'.

» For p{det(G) we have dim(G;) = dim(G) and (%) = (detTfG))
» So only have to consider p|det(G) (needs factorization)

» For p=2 block diagonalizable and a few additional rules.

» How restricting is the genus invariant?

15 / 20

Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)]

Any genus G contains a finite number of isom. classes and its mass

i M(G) = 3

16 / 20

Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)}

Any genus G contains a finite number of isom. classes and its mass

1

(£]eg |aut(L)|’

i M(G) = 3

is efficiently computable given the prime factorization of det(G)2.

16 / 20

Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)}

Any genus G contains a finite number of isom. classes and its mass

i M(G) := Z Tz

» Lemma: |G| > 2M(G). Proof: [Aut(L)| > 2. O
» Example: M(Gen(Z%?)) ~ 4.33-10'6
M(Gen(Z*?)) ~ 1.21 - 1053

16 / 20

Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)}

Any genus G contains a finite number of isom. classes and its mass

i M(G) := Z Tz

» Lemma: |G| > 2M(G). Proof: [Aut(L)| > 2. O
» Example: M(Gen(Z%?)) ~ 4.33-10'6

M(Gen(Z*?)) ~ 1.21 - 1053
» Grows fast: M(G) > n¥") as n — oo

16 / 20

Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)}

Any genus G contains a finite number of isom. classes and its mass

1

(£]eg |aut(L)|’

i M(G) = 3

is efficiently computable given the prime factorization of det(G)2.

» Lemma: |G| > 2M(G). Proof: [Aut(L)| > 2. O
» Example: M(Gen(Z%?)) ~ 4.33-10'6
M(Gen(Z*?)) ~ 1.21 - 1053
Grows fast: M(G) > n¥") as n — oo

» Enormous number of isomorphism classes in same genus

16 / 20

Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)}

Any genus G contains a finite number of isom. classes and its mass

1

(£]eg |aut(L)|’

i M(G) = 3

is efficiently computable given the prime factorization of det(G)2.

» Lemma: |G| > 2M(G). Proof: [Aut(L)| > 2. O
» Example: M(Gen(Z%?)) ~ 4.33-10'6
M(Gen(Z*?)) ~ 1.21 - 1053
Grows fast: M(G) > n¥") as n — oo
Enormous number of isomorphism classes in same genus

Question: do these behave like random lattices?
16/20

Random distribution over genus

[Deflnltlon distribution over Genus] ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability A";,(é))

17 / 20

Random distribution over genus

[Deflnltlon distribution over Genus] ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability A";,(é))

» Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

17 / 20

Random distribution over genus

[Deflnltlon distribution over Genus} ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability I\M;I((é))

» Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

[Theorem (informal): good geometric properties [vW, soon on eprlnt]}

1
For any genus G (satisfying some minor properties), samples from E
D(G) have a packing density, covering radius and smoothing parameter !
similar to that of random lattices. 1

Random distribution over genus

[Deflnltlon distribution over Genus} ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability I\M;I((é))

» Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

[Theorem (informal): good geometric properties [vW, soon on eprlnt]}

1
For any genus G (satisfying some minor properties), samples from E
D(G) have a packing density, covering radius and smoothing parameter !
similar to that of random lattices. 1

» Proven via other Mass formulas by Siegel (1935)

Random distribution over genus

[Deflnltlon distribution over Genus} ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability x%g;

» Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

[Theorem (informal): good geometric properties [vW, soon on eprlnt]}

For any genus G (satisfying some minor properties), samples from
D(G) have a packing density, covering radius and smoothing parameter
similar to that of random lattices.

» Proven via other Mass formulas by Siegel (1935)
» Heuristically, these are the hardest lattices to distinguish.
17 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours Lj ~p Lo if

[£1:£10£2]=[£2:£1ﬂ£2]=p.

18 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours Lj ~p Lo if
[l:l :l:lﬂl:z] = [ﬁz : Elﬂl:z] = p.

» If L4 ~p Ly then Gen(£1) = Gen(LZz).

18 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours L3 ~p Ly if
[[:1 :ﬁlﬂﬁzl = [£2 : Elﬁ[,z] = p.

» If L4 ~p L> then Gen(£1) = Gen(ﬁz).
» A lattice has ~ p"~2 p-neighours (4> isotropic lines in L/pL).

A

.

S

18 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours L3 ~p Ly if
[[:1 :ﬁlﬂﬁzl = [£2 : Elﬁ[,z] = p.
» If L4 ~p L> then Gen(£1) = Gen(ﬁz).
» A lattice has ~ p"~2 p-neighours (4> isotropic lines in L/pL).

[£3] [£2]

[£7] [Lé]

18 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours Lj ~p Lo if
[l:l :l:lﬂl:z] = [ﬁz : Elﬂl:z] = p.

» If L4 ~p Ly then Gen(£1) = Gen(LZz).
» A lattice has ~ p" 2 p-neighours (<> isotropic lines in L/pL).

» Turns any genus into a graph with nodes [Li1],...,[Ln] and an edge
(I£i),[£;]) if L1,L are p-neighbours up to isometry.

I R e N

18 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours Ly ~p Ly if
[ﬁl :ﬁlﬁﬁzl = [ﬂz : ﬂlﬂﬁzl = p.

If L4 ~p Ly then Gen(£1) = Gen(LZz).

A lattice has ~ p" 2 p-neighours (<> isotropic lines in L/pL).
» Turns any genus into a graph with nodes [Li1],...,[Ln] and an edge

([£i), [£;]) if Li1,L are p-neighbours up to isometry.

el r— 2]

» Random walk: Lj~p Ly ~p...~p Ly where Ljy1 is a uniformly
randomly p-neighbour of L;.

18 / 20

Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours Ly ~p Ly if
[ﬁl :ﬁlﬁﬁzl = [ﬂz : ﬂlﬂﬁzl = p.

If L4 ~p Ly then Gen(£1) = Gen(LZz).

A lattice has ~ p" 2 p-neighours (<> isotropic lines in L/pL).
» Turns any genus into a graph with nodes [Li1],...,[Ln] and an edge

([£i), [£;]) if Li1,L are p-neighbours up to isometry.

el r— 2]

» Random walk: Lj~p Ly ~p...~p Ly where Ljy1 is a uniformly
randomly p-neighbour of L;.
» For large enough p, a random walk has limit distribution D(G).
=> efficient sampling algorithm for D(G).
18 / 20

Open Questions

¢[WC—AC reductions :] --- ,

» the random case [£] - D(G) is heuristically the hardest.
» from any class [£] € G we can efficiently step to a random class.
Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

__

19 / 20

Open Questions

¢[WC—AC reductions :] --- ,

» the random case [£] - D(G) is heuristically the hardest.
» from any class [£] € G we can efficiently step to a random class.
Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

__

pe [Better invariants:] --- -
:
1

i » Can we construct stronger efficiently computable invariants?

19 / 20

Open Questions

¢[WC—AC reductions :] --- ,

» the random case [£] - D(G) is heuristically the hardest.
» from any class [£] € G we can efficiently step to a random class.
Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

__

pe [Better invariants:] --- -

i » Can we construct stronger efficiently computable invariants?

- [Structured case :] --

What about module lattices?

» Can we find (significantly) better algorithms for module-LIP?

» How strong is a ‘module-genus’ invariant?

» LIP is well studied from a mathematical perspective (long ago!).

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

1. Compute short vectors

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

1. Compute short vectors
2. Find isometries between them

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

1. Compute short vectors
2. Find isometries between them

» The genus is the strongest* known efficient invariant for LIP

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

1. Compute short vectors
2. Find isometries between them

» The genus is the strongest* known efficient invariant for LIP
» Is not too restricting on the geometry

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

1. Compute short vectors

2. Find isometries between them
» The genus is the strongest* known efficient invariant for LIP

» Is not too restricting on the geometry
» Has a deep theory behind it: randomness, p-neighbouring, mass
formula’s

20 / 20

» LIP is well studied from a mathematical perspective (long ago!).
» Classical algorithms to solve LIP

1. Compute short vectors

2. Find isometries between them
» The genus is the strongest* known efficient invariant for LIP

» Is not too restricting on the geometry

» Has a deep theory behind it: randomness, p-neighbouring, mass
formula’s

» Lots of open questions related to the genus

20 / 20

LIP is well studied from a mathematical perspective (long ago!).
Classical algorithms to solve LIP
1. Compute short vectors
2. Find isometries between them
» The genus is the strongest* known efficient invariant for LIP

» Is not too restricting on the geometry

» Has a deep theory behind it: randomness, p-neighbouring, mass
formula’s

» Lots of open questions related to the genus

» An exciting new area for mathematical cryptology!

20 / 20

LIP is well studied from a mathematical perspective (long ago!).
Classical algorithms to solve LIP

1. Compute short vectors
2. Find isometries between them

» The genus is the strongest* known efficient invariant for LIP

» Is not too restricting on the geometry

» Has a deep theory behind it: randomness, p-neighbouring, mass
formula’s

» Lots of open questions related to the genus

» An exciting new area for mathematical cryptology!

20 / 20

