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Lattice

R-linearly independent b1, . . . , bn ∈ Rn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn,

basis B, gram matrix G := B⊤B

Infinitely many distinct bases

B′ = B · U, G ′ = U⊤GU,

for U ∈ GLn(Z).

Lattice volume

det(L) := vol(Rn/L) = | det(B)|
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Lattice Isomorphism Problem

L(B1) ∼= L(B2)

⇐⇒
O · L(B1) = L(B2) for some O ∈ Od(R)

⇐⇒
O · B1 · U = B2 for some O ∈ Od(R), U ∈ GLd(Z)

▶ If either O or U is trivial: linear algebra.
▶ Use OtO = I to remove the orthonormal transformation.
▶ We restrict to integer or rational gram matrices G := B⊤B.
▶ Solution unique up to Aut(L) = {O ∈ On(R) : O · L = L}.
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Encryption scheme from LIP (informal)

Decodable lattice Bad basis of rotation

LIP

L O · L

Hides (decoding) structure of LEncrypt by adding a small errorDecrypt using decoding algorithm

0

c ′
m′

0

b′1
b′2

m
c = m + e

O ∈ On(R)

(Secret key)
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Cryptography from LIP

▶ LIP as a new hardness assumption

Use LIP to hide a remarkable lattice:
▶ Identification, Encryption and Signature scheme

Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography

▶ Encryption scheme based on LIP on Zn,

Bennett et al.: Just how hard are rotations of Zn?

Efficient signature scheme based on module-LIP on Zn

▶ submitted to NIST call for additional signatures

Ducas et al.: HAWK scheme

▶ Several others works using LIP appeared recently
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Main strategy for solving LIP

Goal: given isomorphic L,L′ ⊂ Rn, compute O ∈ On(R) s.t. L′ = O · L.

Idea: isometries preserve lengths and inner products

=⇒ short(est) vectors map to short(est) vectors

Step 1:
compute short vectors

00 0

Step 2:
compute isometries between them

0 0
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Characteristic Vector Set

0

V : L 7→ V(L) ⊂ L is a CVS if

(1) V(L) generates L.

(2) V(O · L) = O · V(L) ∀O ∈ On(R).

Definition: characteristic vector set
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▶ Vvor(L) :=
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LIP via Graph Isomorphism

00

Time complexity:
exp(log(|V(L)|)O(1))
= O(exp(nO(1))

▶ isometry O : V(L2)→ V(L1)
preserves pairwise inner products.

▶ Idea: this condition is sufficient.
▶ Let GV(L) = (V , ω) be a complete

weighted graph with:
▶ V := V(L) = {v1, . . . , vN}
▶ ω(vi , vj) := ⟨vi , vj⟩ ∀vi , vj ∈ V .

▶ Then:

L1 ∼= L2 ⇐⇒ GV(L1)
∼= GV(L2)

▶ Problem: possibly |V(L)| ≥ 2Ω(n).

▶ Canonical graph labeling algorithms
=⇒ canonical form for LIP.

(Dutour Sikirić-Haensch-Voight-vW 2020)
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Plesken-Souvignier (1997)

▶ Idea: linear isometry f : V(L1)→ V(L2) is fully determined by
image on n independent vectors.

▶ Let v1, . . . , vn ∈ V(L1) be independent.
▶ Backtrack search to determine (compatible) images

f (v1), . . . , f (vn) ∈ V(L2).

▶ Prune search tree: once f (vi) = wi for i = 1, . . . , k, then

⟨f (vk+1), wi⟩ = ⟨f (vk+1), f (vi)⟩ = ⟨vk+1, v⟩,
so possible images of vk+1 are limited.

▶ Use more invariants to limit search-tree.
▶ Good in practice, but tree can be as large as O

(
n! ·

(|V(L)|
n

))
.

▶ If |V(L)| = 2Ω(n) then 2O(n2) in worst-case.
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Time complexity: nO(n)

OQ: Can we do better? (2O(n))

▶ Dual lattice:
L∗ := {w ∈ Rn : ∀v ∈ L, ⟨w, v⟩ ∈ Z}

▶ Idea: pick wi ∈ L∗i that canonically
orders V(Li) by values ⟨v, wi⟩.

▶ If w2 = Ow1, then V(L2) = O · V(L1)
(as ordered lists) =⇒ recover O.

▶ Isolation Lemma: such a wi ∈ L∗i
exists among the nO(n) shortest
vectors of L∗i .

▶ Haviv-Regev algorithm (informal):
1. Compute V(Li) and nO(n) shortest

vecs Si ⊂ L∗
i

2. Isolate w1 ∈ S1, w (1)
2 , . . . , w (N)

2 ∈ S2.
3. Recover isometries from w (i)

2 = Ow1.
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Open Questions
Step 1:

compute short vectors

00 0

Step 2:
compute isometries between them

0 0

▶ Can we do step 2 in 2O(n) time if searching for a single isometry?

Faster isometry finding:

▶ Can we solve LIP without first finding short vectors?

Alternative approach?:
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LIP Variants

Given two isomorphic lattices L1,L2, recover an orthonormal
transformation O ∈ On(R) such that O · L1 = L2.

Definition: search LIP (sLIP)

Given two lattices L1,L2, determine whether L1 ∼= L2 or not.

Definition: decisional LIP (dLIP)

Let L1,L2 be two non-isomorphic lattices and let b ← {1, 2} uniform.
Given L ∈ [Lb], recover b.

Definition: distinguish LIP (∆LIP)

▶ Distinguishing variant is useful for security proofs:

one can replace [L1] by [L2] in security game.
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Invariants

▶ Disclaimer: we only consider integral lattices (B⊤B ∈ Zn×n)

Arithmetic Invariants (ari(L))

▶ det(L) = det(Lb).

▶ gcd(L) := gcd{⟨x, y⟩ : x, y ∈ L}
▶ parity par(L) = gcd{∥x∥2 : x ∈ L}/ gcd(L)
▶ Equivalence over R ⊃ Z, U ∈ GLn(R), R ∈ {R,Q, ∀p Qp,∀p Zp︸ ︷︷ ︸

Genus

}

If ari(L1) ̸= ari(L2), then dLIP and ∆LIP with L1,L2 can be solved
efficiently.

Lemma:

⇒ lattices must have same (efficiently computable) invariants
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Genus

For a prime p the p-adic integers Zp are given by formal series, i.e.,

Zp =

{∞∑
i=0

ai pi , with 0 ≤ ai < p
}

p-adic integers:

The genus gen(L) of a lattice L consists of all lattices that are
equivalent over R and over Zp for all primes p

Genus:

▶ Equivalent over R ⇔ same rank
▶ Equivalent over Zp ⇔ Zp ⊗ L1 ∼= Zp ⊗ L2

⇔ U⊤G1U = G2 for U ∈ GLn(Zp).
▶ Covers all the other known arithmetic invariants*

* (we assume here the genus does not split into multiple spinor genera)
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How to compute genus equivalence?

▶ We consider p ≥ 3.

▶ Idea: over Zp the gram matrix is efficiently diagonalizable.

G ∼=Zp G1 ⊕ pGp ⊕ p2Gp ⊕ . . .⊕ pkGpk ,

where det(Gq) ̸= 0 mod p, and each Gq is a diagonal matrix.
▶ For the diagonal matrices Gq, Zp equivalence is fully determined

by dim(Gq) and the Legendre symbol
(
det(Gq)

p

)
.

▶ G ∼=Zp G ′ if the above values match for all q = pi .

▶ For p ∤ det(G) we have dim(G1) = dim(G) and
(
det(G1)

p

)
=

(
det(G)

p

)
.

▶ So only have to consider p| det(G) (needs factorization)
▶ For p = 2 block diagonalizable and a few additional rules.
▶ How restricting is the genus invariant?
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Mass formula and the size of a genus

Any genus G contains a finite number of isom. classes and its mass

M(G) :=
∑

[L]∈G

1
|Aut(L)|

,

is efficiently computable given the prime factorization of det(G)2.

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)

▶ Lemma: |G| ≥ 2M(G). Proof: |Aut(L)| ≥ 2.
▶ Example: M(Gen(Z32)) ≈ 4.33 · 1016

M(Gen(Z40)) ≈ 1.21 · 1063

▶ Grows fast: M(G) ≥ nΩ(n2) as n →∞
▶ Enormous number of isomorphism classes in same genus
▶ Question: do these behave like random lattices?
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Random distribution over genus

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution
such that each class [L] ∈ G is sampled with probability w(L)

M(G).

Definition: distribution over Genus

▶ Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

For any genus G (satisfying some minor properties), samples from
D(G) have a packing density, covering radius and smoothing parameter
similar to that of random lattices.

Theorem (informal): good geometric properties [vW, soon on eprint]

▶ Proven via other Mass formulas by Siegel (1935)
▶ Heuristically, these are the hardest lattices to distinguish.
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Kneser p-neighbouring (1957) and sampling

▶ Two integral lattices L1,L2 are p-neighbours L1 ∼p L2 if

[L1 : L1 ∩ L2] = [L2 : L1 ∩ L2] = p.

▶ If L1 ∼p L2 then Gen(L1) = Gen(L2).

▶ A lattice has ∼ pn−2 p-neighours (↔ isotropic lines in L/pL).

▶ Turns any genus into a graph with nodes [L1], . . . , [LN] and an edge
([Li ], [Lj ]) if L1,L2 are p-neighbours up to isometry.
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randomly p-neighbour of Li .

▶ For large enough p, a random walk has limit distribution D(G).
=⇒ efficient sampling algorithm for D(G).
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Open Questions

▶ the random case [L]← D(G) is heuristically the hardest.

▶ from any class [L] ∈ G we can efficiently step to a random class.

Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

WC-AC reductions:

▶ Can we construct stronger efficiently computable invariants?

Better invariants:

What about module lattices?

▶ Can we find (significantly) better algorithms for module-LIP?

▶ How strong is a ‘module-genus’ invariant?

Structured case:
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Recap

▶ LIP is well studied from a mathematical perspective (long ago!).

▶ Classical algorithms to solve LIP

1. Compute short vectors
2. Find isometries between them

▶ The genus is the strongest* known efficient invariant for LIP

▶ Is not too restricting on the geometry
▶ Has a deep theory behind it: randomness, p-neighbouring, mass

formula’s
▶ Lots of open questions related to the genus

▶ An exciting new area for mathematical cryptology!

Thanks!
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