The Lattice Isomorphism Problem algorithms and invariants

Wessel van Woerden (Université de Bordeaux, IMB, Inria).

Lattice

$$\mathbb{R}$$
-linearly independent $\mathbf{b_1},\dots,\mathbf{b_n}\in\mathbb{R}^n$ $\mathcal{L}(B):=\{\sum_i x_i b_i: x\in\mathbb{Z}^n\}\subset\mathbb{R}^n,$ basis B , gram matrix $G:=B^\top B$

<u>Lattice</u>

 \mathbb{R} -linearly independent $b_1, \ldots, b_n \in \mathbb{R}^n$

$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n,$$

basis B, gram matrix $G := B^{\top}B$

Lattice volume

$$\det(\mathcal{L}) := \operatorname{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|$$

Lattice

 \mathbb{R} -linearly independent $\mathbf{b}_1,\dots,\mathbf{b}_n\in\mathbb{R}^n$ $\mathcal{L}(B):=\{\sum_i x_i b_i: x\in\mathbb{Z}^n\}\subset\mathbb{R}^n,$ basis B, gram matrix $G:=B^\top B$

Lattice volume

$$\det(\mathcal{L}) := \text{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|$$

Infinitely many distinct bases

$$B' = B \cdot U, \ G' = U^{\top}GU,$$
 for $U \in \mathcal{GL}_n(\mathbb{Z}).$

Lattice

 \mathbb{R} -linearly independent $b_1,\ldots,b_n\in\mathbb{R}^n$

$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n,$$

basis B, gram matrix $G := B^{\top}B$

Lattice volume

$$\det(\mathcal{L}) := \text{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|$$

Infinitely many distinct bases

$$B' = B \cdot U, \ G' = U^{\top}GU,$$
 for $U \in \mathcal{GL}_n(\mathbb{Z}).$

LIP: given isomorphic $\mathcal{L}_1,\mathcal{L}_2,$ compute $O\in\mathcal{O}_n(\mathbb{R})$ s.t. $\mathcal{L}_2=O\cdot\mathcal{L}_1.$

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$ \iff $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$ \iff $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$

lacksquare If either $oldsymbol{0}$ or $oldsymbol{U}$ is trivial: linear algebra.

$$\mathcal{L}(B_1) \cong \mathcal{L}(B_2)$$
 \iff $O \cdot \mathcal{L}(B_1) = \mathcal{L}(B_2)$ for some $O \in O_d(\mathbb{R})$ \iff $O \cdot B_1 \cdot U = B_2$ for some $O \in O_d(\mathbb{R}), U \in \mathrm{GL}_d(\mathbb{Z})$ \iff $U^t B_1^t B_1 U = \underbrace{B_2^t B_2}_{\mathrm{gram \ matrix}}$ for some $U \in \mathrm{GL}_d(\mathbb{Z})$

- ightharpoonup If either O or U is trivial: linear algebra.
- ▶ Use $O^tO = I$ to remove the orthonormal transformation.

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$ \iff $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$ \iff $U^tB_1^tB_1U=\underbrace{B_2^tB_2}_{\mathrm{gram\ matrix}}$ for some $U\in \mathrm{GL}_d(\mathbb{Z})$

- ightharpoonup If either O or U is trivial: linear algebra.
- ▶ Use $O^tO = I$ to remove the orthonormal transformation.
- ▶ We restrict to integer or rational gram matrices $G := B^{\top}B$.

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$ \iff $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$ \iff $U^tB_1^tB_1U=\underbrace{B_2^tB_2}_{\mathrm{gram\ matrix}}$ for some $U\in \mathrm{GL}_d(\mathbb{Z})$

- \blacktriangleright If either O or U is trivial: linear algebra.
- ▶ Use $O^tO = I$ to remove the orthonormal transformation.
- lacktriangle We restrict to integer or rational gram matrices $G:=B^{ op}B$.
- ▶ Solution unique up to $\operatorname{Aut}(\mathcal{L}) = \{O \in \mathcal{O}_n(\mathbb{R}) : O \cdot \mathcal{L} = \mathcal{L}\}.$

Hides (decoding) structure of ${\cal L}$

Decrypt using decoding algorithm

▶ LIP as a new hardness assumption

▶ LIP as a new hardness assumption

```
Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography
```

Use LIP to hide a remarkable lattice:

 \blacktriangleright Identification, Encryption and Signature scheme

▶ LIP as a new hardness assumption

```
Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography ---- Use LIP to hide a remarkable lattice:
```

lacktriangleright Identification, Encryption and Signature scheme

```
Bennett et al.: Just how hard are rotations of \mathbb{Z}^n?
```

▶ Encryption scheme based on LIP on \mathbb{Z}^n ,

▶ LIP as a new hardness assumption

```
Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography

Use LIP to hide a remarkable lattice:

► Identification, Encryption and Signature scheme

Bennett et al.: Just how hard are rotations of Z<sup>n</sup>?
```

▶ Encryption scheme based on LIP on \mathbb{Z}^n ,

```
Ducas et al.: HAWK scheme
```

Efficient signature scheme based on module-LIP on \mathbb{Z}^n

- ▶ submitted to NIST call for additional signatures
- ▶ Several others works using LIP appeared recently

Main strategy for solving LIP

Goal: given isomorphic $\mathcal{L}, \mathcal{L}' \subset \mathbb{R}^n$, compute $O \in \mathcal{O}_n(\mathbb{R})$ s.t. $\mathcal{L}' = O \cdot \mathcal{L}$.

Main strategy for solving LIP

Goal: given isomorphic $\mathcal{L}, \mathcal{L}' \subset \mathbb{R}^n$, compute $O \in \mathcal{O}_n(\mathbb{R})$ s.t. $\mathcal{L}' = O \cdot \mathcal{L}$.

Idea: isometries preserve lengths and inner products

⇒ short(est) vectors map to short(est) vectors

Main strategy for solving LIP

Goal: given isomorphic $\mathcal{L}, \mathcal{L}' \subset \mathbb{R}^n$, compute $O \in \mathcal{O}_n(\mathbb{R})$ s.t. $\mathcal{L}' = O \cdot \mathcal{L}$.

Idea: isometries preserve lengths and inner products

⇒ short(est) vectors map to short(est) vectors

Step 1: compute short vectors

Step 2: compute isometries between them

Definition: characteristic vector set $\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$ is a CVS if

$$(1) \quad \mathcal{V}(\mathcal{L}) \subseteq \mathcal{L} \text{ is a CVS 1}$$

$$(2) \quad \mathcal{V}(\mathcal{L}) \text{ generates } \mathcal{L}.$$

(2)
$$\mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$$

Definition: characteristic vector set

 $\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$ is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} .
- $(2) \ \mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$

Definition: characteristic vector set

$$\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$$
 is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} .
- $(2) \ \mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$

Example:

▶ Property (2) is satisfied e.g. by $Min(\mathcal{L}, \lambda) := \{x \in \mathcal{L} : ||\mathcal{L}|| \le \lambda\}.$

Definition: characteristic vector set

$$\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$$
 is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} .
- $(2) \ \mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$

Example:

- Property (2) is satisfied e.g. by $\min(\mathcal{L}, \lambda) := \{x \in \mathcal{L} : \|\mathcal{L}\| \le \lambda\}.$
- $\mathcal{V}_{\text{ms}}(\mathcal{L}) := \text{Min}(\mathcal{L}, \lambda_{\text{min}}(\mathcal{L})) \text{ with } \lambda_{\text{min}}(\mathcal{L})$ minimal s.t. (1) is satisfied.

Definition: characteristic vector set

$$\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$$
 is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} .
- $(2) \ \mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$

Example:

- Property (2) is satisfied e.g. by $\min(\mathcal{L}, \lambda) := \{x \in \mathcal{L} : \|\mathcal{L}\| \le \lambda\}.$
- $\mathcal{V}_{\text{ms}}(\mathcal{L}) := \text{Min}(\mathcal{L}, \lambda_{\text{min}}(\mathcal{L})) \text{ with } \lambda_{\text{min}}(\mathcal{L})$ minimal s.t. (1) is satisfied.
- $\mathcal{V}_{\text{vor}}(\mathcal{L}) := \{ \text{Voronoi relevant vectors of } \mathcal{L} \}.$

Definition: characteristic vector set

 $\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$ is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} .
- $(2) \ \mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$

Example:

- ▶ Property (2) is satisfied e.g. by $Min(\mathcal{L}, \lambda) := \{x \in \mathcal{L} : ||\mathcal{L}|| \le \lambda\}.$
- $\mathcal{V}_{\text{ms}}(\mathcal{L}) := \text{Min}(\mathcal{L}, \lambda_{\text{min}}(\mathcal{L})) \text{ with } \lambda_{\text{min}}(\mathcal{L})$ minimal s.t. (1) is satisfied.
- $\mathcal{V}_{\text{vor}}(\mathcal{L}) := \{ \text{Voronoi relevant vectors of } \mathcal{L} \}.$
- ▶ Complexity: $2^{O(n)}$ time and memory.

Definition: characteristic vector set

$$\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$$
 is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} .
- $(2) \ \mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R}).$
 - ▶ Can be used as a proxy:

$$egin{aligned} \mathcal{L}_2 &= O \cdot \mathcal{L}_1 \ &\Longleftrightarrow \ \mathcal{V}(\mathcal{L}_2) & = & O \cdot \mathcal{V}(\mathcal{L}_1) \end{aligned}$$

Definition: characteristic vector set

$$\mathcal{V}:\mathcal{L}\mapsto\mathcal{V}(\mathcal{L})\subset\mathcal{L}$$
 is a CVS if

- (1) $\mathcal{V}(\mathcal{L})$ generates \mathcal{L} . (2) $\mathcal{V}(O \cdot \mathcal{L}) = O \cdot \mathcal{V}(\mathcal{L}) \ \forall O \in \mathcal{O}_n(\mathbb{R})$.
 - ▶ Can be used as a proxy:

$$\mathcal{L}_2 = O \cdot \mathcal{L}_1 \ \iff \ \mathcal{V}(\mathcal{L}_2) \underbrace{=}_{\mathrm{as \ a \ Set}} O \cdot \mathcal{V}(\mathcal{L}_1$$

▶ Goal: find a linear isometry $O: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$.

ightharpoonup isometry $O: \mathcal{V}(\mathcal{L}_2)
ightarrow \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.

ightharpoonup isometry $O: \mathcal{V}(\mathcal{L}_2)
ightharpoonup \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.

- $lackbox{ isometry } O: \mathcal{V}(\mathcal{L}_2)
 ightarrow \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.
- Idea: this condition is sufficient.

- $lackbox{ isometry } O: \mathcal{V}(\mathcal{L}_2)
 ightarrow \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.
- ▶ Idea: this condition is sufficient.
- Let $G_{\mathcal{V}(\mathcal{L})} = (V, \omega)$ be a complete weighted graph with:

$$\qquad \qquad \omega(\mathbf{v}_i,\mathbf{v}_j) := \langle \mathbf{v}_i,\mathbf{v}_j \rangle \quad \forall \mathbf{v}_i,\mathbf{v}_j \in \mathbf{V}.$$

- $lackbrack ext{isometry } O: \mathcal{V}(\mathcal{L}_2)
 ightarrow \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.
- ▶ Idea: this condition is sufficient.
- ▶ Let $G_{\mathcal{V}(\mathcal{L})} = (V, \omega)$ be a complete weighted graph with:

$$\qquad \qquad \omega(\mathbf{v}_i, \mathbf{v}_i) := \langle \mathbf{v}_i, \mathbf{v}_i \rangle \quad \forall \mathbf{v}_i, \mathbf{v}_i \in \mathbf{V}.$$

▶ Then:

$$\mathcal{L}_1\cong\mathcal{L}_2\Longleftrightarrow extbf{\textit{G}}_{\mathcal{V}(\mathcal{L}_1)}\cong extbf{\textit{G}}_{\mathcal{V}(\mathcal{L}_2)}$$

- $lackbox{ isometry } O: \mathcal{V}(\mathcal{L}_2)
 ightarrow \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.
- ▶ Idea: this condition is sufficient.
- Let $G_{\mathcal{V}(\mathcal{L})} = (V, \omega)$ be a complete weighted graph with:

$$\qquad \qquad \omega(\mathbf{v}_i, \mathbf{v}_j) := \langle \mathbf{v}_i, \mathbf{v}_j \rangle \quad \forall \mathbf{v}_i, \mathbf{v}_j \in \mathbf{V}.$$

▶ Then:

$$\mathcal{L}_1 \cong \mathcal{L}_2 \Longleftrightarrow \textit{G}_{\mathcal{V}(\mathcal{L}_1)} \cong \textit{G}_{\mathcal{V}(\mathcal{L}_2)}$$

Time complexity: $exp(log(|\mathcal{V}(\mathcal{L})|)^{O(1)})$ $= O(exp(n^{O(1)})$

- $lackbrack ext{isometry } O: \mathcal{V}(\mathcal{L}_2) o \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.
- ▶ Idea: this condition is sufficient.
- Let $G_{\mathcal{V}(\mathcal{L})} = (V, \omega)$ be a complete weighted graph with:

$$\qquad \qquad \omega(\mathbf{v}_i, \mathbf{v}_j) := \langle \mathbf{v}_i, \mathbf{v}_j \rangle \quad \forall \mathbf{v}_i, \mathbf{v}_j \in \mathbf{V}.$$

▶ Then:

$$\mathcal{L}_1 \cong \mathcal{L}_2 \Longleftrightarrow \textit{G}_{\mathcal{V}(\mathcal{L}_1)} \cong \textit{G}_{\mathcal{V}(\mathcal{L}_2)}$$

ightharpoonup Problem: possibly $|\mathcal{V}(\mathcal{L})| \geq 2^{\Omega(n)}$.

Time complexity: $\exp(\log(|\mathcal{V}(\mathcal{L})|)^{O(1)})$ $= O(\exp(n^{O(1)})$

- $lackbox{ isometry } O: \mathcal{V}(\mathcal{L}_2)
 ightarrow \mathcal{V}(\mathcal{L}_1)$ preserves pairwise inner products.
- ▶ Idea: this condition is sufficient.
- Let $G_{\mathcal{V}(\mathcal{L})} = (V, \omega)$ be a complete weighted graph with:

$$\qquad \qquad \omega(\mathbf{v}_i, \mathbf{v}_j) := \langle \mathbf{v}_i, \mathbf{v}_j \rangle \quad \forall \mathbf{v}_i, \mathbf{v}_j \in \mathbf{V}.$$

▶ Then:

$$\mathcal{L}_1 \cong \mathcal{L}_2 \Longleftrightarrow \textit{\textbf{G}}_{\mathcal{V}(\mathcal{L}_1)} \cong \textit{\textbf{G}}_{\mathcal{V}(\mathcal{L}_2)}$$

- ightharpoonup Problem: possibly $|\mathcal{V}(\mathcal{L})| \geq 2^{\Omega(n)}$.
- ► Canonical graph labeling algorithms ⇒ canonical form for LIP.

▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.

- ▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.
- ▶ Let $v_1, \ldots, v_n \in \mathcal{V}(\mathcal{L}_1)$ be independent.

- ▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.
- ▶ Let $v_1, \ldots, v_n \in \mathcal{V}(\mathcal{L}_1)$ be independent.
- ▶ Backtrack search to determine (compatible) images $f(v_1), \ldots, f(v_n) \in \mathcal{V}(\mathcal{L}_2)$.

- ▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.
- ▶ Let $v_1, \ldots, v_n \in \mathcal{V}(\mathcal{L}_1)$ be independent.
- ▶ Backtrack search to determine (compatible) images $f(v_1), \ldots, f(v_n) \in \mathcal{V}(\mathcal{L}_2)$.

▶ Prune search tree: once $f(v_i) = w_i$ for i = 1, ..., k, then

$$\langle f(\mathbf{v}_{k+1}), \mathbf{w}_i \rangle = \langle f(\mathbf{v}_{k+1}), f(\mathbf{v}_i) \rangle = \langle \mathbf{v}_{k+1}, \mathbf{v} \rangle,$$

so possible images of v_{k+1} are limited.

- ▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.
- ▶ Let $v_1, \ldots, v_n \in \mathcal{V}(\mathcal{L}_1)$ be independent.
- ▶ Backtrack search to determine (compatible) images $f(v_1), \ldots, f(v_n) \in \mathcal{V}(\mathcal{L}_2)$.
- ▶ Prune search tree: once $f(v_i) = w_i$ for i = 1, ..., k, then

$$\langle f(\mathbf{v}_{k+1}), \mathbf{w}_i \rangle = \langle f(\mathbf{v}_{k+1}), f(\mathbf{v}_i) \rangle = \langle \mathbf{v}_{k+1}, \mathbf{v} \rangle,$$

so possible images of v_{k+1} are limited.

▶ Use more invariants to limit search-tree.

- ▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.
- ▶ Let $v_1, \ldots, v_n \in \mathcal{V}(\mathcal{L}_1)$ be independent.
- ▶ Backtrack search to determine (compatible) images $f(v_1), \ldots, f(v_n) \in \mathcal{V}(\mathcal{L}_2)$.
- ▶ Prune search tree: once $f(v_i) = w_i$ for i = 1, ..., k, then

$$\langle f(\mathbf{v}_{k+1}), \mathbf{w}_i \rangle = \langle f(\mathbf{v}_{k+1}), f(\mathbf{v}_i) \rangle = \langle \mathbf{v}_{k+1}, \mathbf{v} \rangle,$$

so possible images of v_{k+1} are limited.

- ▶ Use more invariants to limit search-tree.
- ▶ Good in practice, but tree can be as large as $\mathcal{O}\left(n!\cdot \binom{|\mathcal{V}(\mathcal{L})|}{n}\right)$.

- ▶ Idea: linear isometry $f: \mathcal{V}(\mathcal{L}_1) \to \mathcal{V}(\mathcal{L}_2)$ is fully determined by image on n independent vectors.
- ▶ Let $v_1, \ldots, v_n \in \mathcal{V}(\mathcal{L}_1)$ be independent.
- ▶ Backtrack search to determine (compatible) images $f(v_1), \ldots, f(v_n) \in \mathcal{V}(\mathcal{L}_2)$.
- Prune search tree: once $f(v_i) = w_i$ for i = 1, ..., k, then

$$\langle f(\mathbf{v}_{k+1}), \mathbf{w}_i \rangle = \langle f(\mathbf{v}_{k+1}), f(\mathbf{v}_i) \rangle = \langle \mathbf{v}_{k+1}, \mathbf{v} \rangle,$$

so possible images of v_{k+1} are limited.

- ▶ Use more invariants to limit search-tree.
- ▶ Good in practice, but tree can be as large as $\mathcal{O}\left(n!\cdot \binom{|\mathcal{V}(\mathcal{L})|}{n}\right)$.
- ▶ If $|\mathcal{V}(\mathcal{L})| = 2^{\Omega(n)}$ then $2^{O(n^2)}$ in worst-case.

$$\mathcal{L}^* := \{ \mathbf{w} \in \mathbb{R}^n : \forall \mathbf{v} \in \mathcal{L}, \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z} \}$$

$$\mathcal{L}^* := \{ \mathbf{w} \in \mathbb{R}^n : \forall \mathbf{v} \in \mathcal{L}, \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z} \}$$

Dual lattice:

$$\mathcal{L}^* := \{ \mathbf{w} \in \mathbb{R}^n : \forall \mathbf{v} \in \mathcal{L}, \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z} \}$$

▶ Idea: pick $w_i \in \mathcal{L}_i^*$ that canonically orders $\mathcal{V}(\mathcal{L}_i)$ by values $\langle v, w_i \rangle$.

Dual lattice:

$$\mathcal{L}^* := \{ \mathbf{w} \in \mathbb{R}^n : \forall \mathbf{v} \in \mathcal{L}, \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z} \}$$

▶ Idea: pick $w_i \in \mathcal{L}_i^*$ that canonically orders $\mathcal{V}(\mathcal{L}_i)$ by values $\langle v, w_i \rangle$.

$$\mathcal{L}^* := \{ \mathbf{w} \in \mathbb{R}^n : \forall \mathbf{v} \in \mathcal{L}, \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z} \}$$

- ▶ Idea: pick $w_i \in \mathcal{L}_i^*$ that canonically orders $\mathcal{V}(\mathcal{L}_i)$ by values $\langle v, w_i \rangle$.
- ▶ If $w_2 = Ow_1$, then $\mathcal{V}(\mathcal{L}_2) = O \cdot \mathcal{V}(\mathcal{L}_1)$ (as ordered lists) \implies recover O.

$$\mathcal{L}^* := \{ w \in \mathbb{R}^n : \forall v \in \mathcal{L}, \langle w, v \rangle \in \mathbb{Z} \}$$

- ▶ Idea: pick $w_i \in \mathcal{L}_i^*$ that canonically orders $\mathcal{V}(\mathcal{L}_i)$ by values $\langle v, w_i \rangle$.
- If $w_2 = Ow_1$, then $\mathcal{V}(\mathcal{L}_2) = O \cdot \mathcal{V}(\mathcal{L}_1)$ (as ordered lists) \implies recover O.
- ▶ Isolation Lemma: such a $w_i \in \mathcal{L}_i^*$ exists among the $n^{O(n)}$ shortest vectors of \mathcal{L}_i^* .

$$\mathcal{L}^* := \{ w \in \mathbb{R}^n : \forall v \in \mathcal{L}, \langle w, v \rangle \in \mathbb{Z} \}$$

- ▶ Idea: pick $w_i \in \mathcal{L}_i^*$ that canonically orders $\mathcal{V}(\mathcal{L}_i)$ by values $\langle v, w_i \rangle$.
- ▶ If $w_2 = Ow_1$, then $\mathcal{V}(\mathcal{L}_2) = O \cdot \mathcal{V}(\mathcal{L}_1)$ (as ordered lists) \implies recover O.
- ▶ Isolation Lemma: such a $w_i \in \mathcal{L}_i^*$ exists among the $n^{O(n)}$ shortest vectors of \mathcal{L}_i^* .
- ► Haviv-Regev algorithm (informal):
 - 1. Compute $\mathcal{V}(\mathcal{L}_i)$ and $n^{O(n)}$ shortest vecs $S_i \subset \mathcal{L}_i^*$
 - 2. Isolate $w_1 \in S_1$, $w_2^{(1)}, \dots, w_2^{(N)} \in S_2$.
 - 3. Recover isometries from $\mathbf{w}_2^{(i)} = \mathbf{O}\mathbf{w}_1$.

$$\mathcal{L}^* := \{ \mathbf{w} \in \mathbb{R}^n : \forall \mathbf{v} \in \mathcal{L}, \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z} \}$$

- ▶ Idea: pick $w_i \in \mathcal{L}_i^*$ that canonically orders $\mathcal{V}(\mathcal{L}_i)$ by values $\langle v, w_i \rangle$.
- ▶ If $w_2 = Ow_1$, then $\mathcal{V}(\mathcal{L}_2) = O \cdot \mathcal{V}(\mathcal{L}_1)$ (as ordered lists) \implies recover O.
- ▶ Isolation Lemma: such a $w_i \in \mathcal{L}_i^*$ exists among the $n^{O(n)}$ shortest vectors of \mathcal{L}_i^* .
- ► Haviv-Regev algorithm (informal):
 - 1. Compute $\mathcal{V}(\mathcal{L}_i)$ and $n^{O(n)}$ shortest vecs $S_i \subset \mathcal{L}_i^*$
 - 2. Isolate $w_1 \in S_1$, $w_2^{(1)}, \dots, w_2^{(N)} \in S_2$.
 - 3. Recover isometries from $w_2^{(i)} = Ow_1$.

Open Questions

compute short vectors

Step 1:

Step 2:
compute isometries between them

Open Questions

Open Questions

Definition: decisional LIP (dLIP)

Given two lattices $\mathcal{L}_1,\mathcal{L}_2$, determine whether $\mathcal{L}_1\cong\mathcal{L}_2$ or not.

Definition: search LIP (sLIP) Given two isomorphic lattices $\mathcal{L}_1, \mathcal{L}_2$, recover an orthonormal transformation $O \in \mathcal{O}_n(\mathbb{R})$ such that $O \cdot \mathcal{L}_1 = \mathcal{L}_2$.

Definition: decisional LIP (dLIP)

Given two lattices $\mathcal{L}_1, \mathcal{L}_2$, determine whether $\mathcal{L}_1 \cong \mathcal{L}_2$ or not.

Definition: distinguish LIP (△LIP)

Let $\mathcal{L}_1, \mathcal{L}_2$ be two non-isomorphic lattices and let $b \leftarrow \{1, 2\}$ uniform. Given $\mathcal{L} \in [\mathcal{L}_b]$, recover **b**.

Definition: search LIP (sLIP) -----Given two isomorphic lattices $\mathcal{L}_1, \mathcal{L}_2$, recover an orthonormal transformation $O \in \mathcal{O}_n(\mathbb{R})$ such that $O \cdot \mathcal{L}_1 = \mathcal{L}_2$.

Definition: decisional LIP (dLIP)

Given two lattices $\mathcal{L}_1, \mathcal{L}_2$, determine whether $\mathcal{L}_1 \cong \mathcal{L}_2$ or not.

Definition: distinguish LIP (△LIP) --

Let $\mathcal{L}_1, \mathcal{L}_2$ be two non-isomorphic lattices and let $b \leftarrow \{1, 2\}$ uniform. Given $\mathcal{L} \in [\mathcal{L}_b]$, recover b.

▶ Distinguishing variant is useful for security proofs: one can replace $[\mathcal{L}_1]$ by $[\mathcal{L}_2]$ in security game.

lacktriangle Disclaimer: we only consider integral lattices $(B^ op B \in \mathbb{Z}^{n imes n})$

lacktriangle Disclaimer: we only consider integral lattices $(B^ op B \in \mathbb{Z}^{n imes n})$

Arithmetic Invariants $(ari(\mathcal{L}))$

- $\to \det(\mathcal{L}) = \det(\mathcal{L}_b).$
- ▶ parity $par(\mathcal{L}) = gcd\{||x||^2 : x \in \mathcal{L}\}/gcd(\mathcal{L})$

▶ Disclaimer: we only consider integral lattices $(B^TB \in \mathbb{Z}^{n \times n})$

Arithmetic Invariants $(ari(\mathcal{L}))$

- ▶ parity $par(\mathcal{L}) = gcd\{||x||^2 : x \in \mathcal{L}\}/gcd(\mathcal{L})$
- ▶ Equivalence over $R \supset \mathbb{Z}$, $U \in GL_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \underbrace{\forall p \ \mathbb{Z}_p}_{Ganus}\}$

▶ Disclaimer: we only consider integral lattices $(B^TB \in \mathbb{Z}^{n \times n})$

Arithmetic Invariants $(ari(\mathcal{L}))$

- $\qquad \text{parity } \mathsf{par}(\mathcal{L}) = \gcd\{\|x\|^2 : x \in \mathcal{L}\}/\gcd(\mathcal{L})$
- ▶ Equivalence over $R \supset \mathbb{Z}$, $U \in \mathrm{GL}_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \underbrace{\forall p \ \mathbb{Z}_p}_{\mathrm{Genus}}\}$

```
Lemma:
```

If $ari(\mathcal{L}_1) \neq ari(\mathcal{L}_2)$, then dLIP and Δ LIP with $\mathcal{L}_1, \mathcal{L}_2$ can be solved efficiently.

Invariants

▶ Disclaimer: we only consider integral lattices $(B^TB \in \mathbb{Z}^{n \times n})$

Arithmetic Invariants $(ari(\mathcal{L}))$

- ▶ Equivalence over $R \supset \mathbb{Z}$, $U \in \mathrm{GL}_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \underbrace{\forall p \ \mathbb{Z}_p}_{\mathrm{Genus}}\}$

```
If \operatorname{ari}(\mathcal{L}_1) \neq \operatorname{ari}(\mathcal{L}_2), then \operatorname{dLIP} and \DeltaLIP with \mathcal{L}_1, \mathcal{L}_2 can be solved efficiently.
```

⇒ lattices must have same (efficiently computable) invariants

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_p = \left\{ \sum_{i=0}^\infty a_i p^i, \quad ext{with } 0 \leq a_i$$

| **p**-adic integers: |-

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_p = \left\{ \sum_{i=0}^\infty a_i p^i, \quad ext{with } 0 \leq a_i$$

(Genus:)

The genus $\operatorname{gen}(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{oldsymbol{
ho}} = \left\{ \sum_{i=0}^{\infty} a_i oldsymbol{
ho}^i, \quad ext{with } 0 \leq a_i < oldsymbol{
ho}
ight\}$$

Genus:

The genus $\operatorname{gen}(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

▶ Equivalent over $\mathbb{R} \Leftrightarrow \mathsf{same}\ \mathsf{rank}$

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{p} = \left\{ \sum_{i=0}^{\infty} a_{i} p^{i}, \quad ext{with } 0 \leq a_{i}$$

Genus:

The genus $gen(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

- ▶ Equivalent over $\mathbb{R} \Leftrightarrow \mathsf{same}\ \mathsf{rank}$
- ▶ Equivalent over $\mathbb{Z}_{p} \Leftrightarrow \mathbb{Z}_{p} \otimes \mathcal{L}_{1} \cong \mathbb{Z}_{p} \otimes \mathcal{L}_{2}$

$$\Leftrightarrow U^{\top}G_1U = G_2 \text{ for } U \in \mathcal{GL}_n(\mathbb{Z}_p).$$

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{p} = \left\{ \sum_{i=0}^{\infty} a_{i} p^{i}, \quad ext{with } 0 \leq a_{i}$$

Genus:

The genus $gen(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

- ▶ Equivalent over $\mathbb{R} \iff \mathsf{same} \ \mathsf{rank}$
- ▶ Equivalent over $\mathbb{Z}_p \Leftrightarrow \mathbb{Z}_p \otimes \mathcal{L}_1 \cong \mathbb{Z}_p \otimes \mathcal{L}_2$

$$\Leftrightarrow U^{\top}G_1U = G_2 \text{ for } U \in \mathcal{GL}_n(\mathbb{Z}_p).$$

▶ Covers all the other known arithmetic invariants*

| p-adic integers: |-

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{p} = \left\{ \sum_{i=0}^{\infty} a_{i} p^{i}, \quad ext{with } 0 \leq a_{i}$$

Genus:

The genus $gen(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

- ▶ Equivalent over $\mathbb{R} \iff \mathsf{same} \ \mathsf{rank}$
- ▶ Equivalent over $\mathbb{Z}_p \Leftrightarrow \mathbb{Z}_p \otimes \mathcal{L}_1 \cong \mathbb{Z}_p \otimes \mathcal{L}_2$

$$\Leftrightarrow U^{\top}G_1U = G_2 \text{ for } U \in \mathcal{GL}_n(\mathbb{Z}_p).$$

- ▶ Covers all the other known arithmetic invariants*
 - * (we assume here the genus does not split into multiple spinor genera)

• We consider $p \geq 3$.

- ▶ We consider $p \ge 3$.
- ▶ Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus \rho G_\rho \oplus \rho^2 G_\rho \oplus \ldots \oplus \rho^k G_{\rho^k},$$

- ▶ We consider $p \ge 3$.
- lacktriangledown Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus \rho G_\rho \oplus \rho^2 G_\rho \oplus \ldots \oplus \rho^k G_{\rho^k},$$

where $\det(G_q) \neq 0 \mod p$, and each G_q is a diagonal matrix.

For the diagonal matrices G_q , \mathbb{Z}_p equivalence is fully determined by $\dim(G_q)$ and the Legendre symbol $\left(\frac{\det(G_q)}{p}\right)$.

- ▶ We consider $p \ge 3$.
- ▶ Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus pG_p \oplus p^2G_p \oplus \ldots \oplus p^kG_{p^k},$$

- For the diagonal matrices G_q , \mathbb{Z}_p equivalence is fully determined by $\dim(G_q)$ and the Legendre symbol $\left(\frac{\det(G_q)}{p}\right)$.
- ullet $G\cong_{\mathbb{Z}_p} G'$ if the above values match for all $q=p^i$.

- ▶ We consider $p \ge 3$.
- ▶ Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus pG_p \oplus p^2G_p \oplus \ldots \oplus p^kG_{p^k},$$

- For the diagonal matrices G_q , \mathbb{Z}_p equivalence is fully determined by $\dim(G_q)$ and the Legendre symbol $\left(\frac{\det(G_q)}{p}\right)$.
- ullet $G\cong_{\mathbb{Z}_p}G'$ if the above values match for all $q=p^i$.
- For $p \nmid \det(G)$ we have $\dim(G_1) = \dim(G)$ and $\left(\frac{\det(G_1)}{p}\right) = \left(\frac{\det(G)}{p}\right)$.

- ▶ We consider $p \ge 3$.
- ▶ Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus pG_p \oplus p^2G_p \oplus \ldots \oplus p^kG_{p^k},$$

- For the diagonal matrices G_q , \mathbb{Z}_p equivalence is fully determined by $\dim(G_q)$ and the Legendre symbol $\left(\frac{\det(G_q)}{p}\right)$.
- ullet $G\cong_{\mathbb{Z}_p}G'$ if the above values match for all $q=p^i$.
- For $p \nmid \det(G)$ we have $\dim(G_1) = \dim(G)$ and $\left(\frac{\det(G_1)}{p}\right) = \left(\frac{\det(G)}{p}\right)$.
- \triangleright So only have to consider $p \mid \det(G)$ (needs factorization)

- ▶ We consider $p \ge 3$.
- ▶ Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus pG_p \oplus p^2G_p \oplus \ldots \oplus p^kG_{p^k},$$

- For the diagonal matrices G_q , \mathbb{Z}_p equivalence is fully determined by $\dim(G_q)$ and the Legendre symbol $\left(\frac{\det(G_q)}{p}\right)$.
- ullet $G\cong_{\mathbb{Z}_p} G'$ if the above values match for all $q=p^i$.
- For $p \nmid \det(G)$ we have $\dim(G_1) = \dim(G)$ and $\left(\frac{\det(G_1)}{p}\right) = \left(\frac{\det(G)}{p}\right)$.
- ▶ So only have to consider $p \mid \det(G)$ (needs factorization)
- For p=2 block diagonalizable and a few additional rules.

- ▶ We consider $p \ge 3$.
- ▶ Idea: over \mathbb{Z}_p the gram matrix is efficiently diagonalizable.

$$G \cong_{\mathbb{Z}_p} G_1 \oplus pG_p \oplus p^2G_p \oplus \ldots \oplus p^kG_{p^k},$$

- For the diagonal matrices G_q , \mathbb{Z}_p equivalence is fully determined by $\dim(G_q)$ and the Legendre symbol $\left(\frac{\det(G_q)}{p}\right)$.
- ullet $G\cong_{\mathbb{Z}_p}G'$ if the above values match for all $q=p^i$.
- For $p \nmid \det(G)$ we have $\dim(G_1) = \dim(G)$ and $\left(\frac{\det(G_1)}{p}\right) = \left(\frac{\det(G)}{p}\right)$.
- ▶ So only have to consider $p \mid \det(G)$ (needs factorization)
- For p=2 block diagonalizable and a few additional rules.
- ▶ How restricting is the genus invariant?

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935) -Any genus \mathcal{G} contains a finite number of isom. classes and its mass

$$\mathcal{M}(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} \frac{1}{|\operatorname{Aut}(\mathcal{L})|},$$

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935) -Any genus \mathcal{G} contains a finite number of isom. classes and its mass

$$extstyle extstyle M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} rac{1}{| extstyle extstyle extstyle extstyle G(\mathcal{L})|},$$

▶ Lemma:
$$|\mathcal{G}| \geq 2M(\mathcal{G})$$
. Proof: $|\text{Aut}(\mathcal{L})| \geq 2$.

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935) -Anv genus \mathcal{G} contains a finite number of isom. classes and its mass

$$M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} \frac{1}{|\operatorname{Aut}(\mathcal{L})|},$$

- ▶ Lemma: $|\mathcal{G}| \geq 2M(\mathcal{G})$. Proof: $|\operatorname{Aut}(\mathcal{L})| \geq 2$.
- Example: $M(\mathsf{Gen}(\mathbb{Z}^{32})) pprox 4.33 \cdot 10^{16}$

$$M(\mathsf{Gen}(\mathbb{Z}^{40})) \approx 1.21 \cdot 10^{63}$$

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935) -Any genus \mathcal{G} contains a finite number of isom. classes and its mass

$$extstyle extstyle M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} rac{1}{| extstyle \operatorname{Aut}(\mathcal{L})|},$$

is efficiently computable given the prime factorization of $\det(\mathcal{G})^2$.

- ▶ Lemma: $|\mathcal{G}| \ge 2M(\mathcal{G})$. Proof: $|\text{Aut}(\mathcal{L})| \ge 2$.
- Example: $M(\mathsf{Gen}(\mathbb{Z}^{32})) \approx 4.33 \cdot 10^{16}$

$$M(\mathsf{Gen}(\mathbb{Z}^{40})) \approx 1.21 \cdot 10^{63}$$

lacksquare Grows fast: $M(\mathcal{G}) \geq n^{\Omega(n^2)}$ as $n o \infty$

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935) -
Any genus \mathcal{G} contains a finite number of isom. classes and its mass

$$M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} \frac{1}{|\operatorname{Aut}(\mathcal{L})|},$$

- ▶ Lemma: $|\mathcal{G}| \ge 2M(\mathcal{G})$. Proof: $|\text{Aut}(\mathcal{L})| \ge 2$.
- Example: $M(\mathsf{Gen}(\mathbb{Z}^{32})) \approx 4.33 \cdot 10^{16}$

$$M(\mathsf{Gen}(\mathbb{Z}^{40})) \approx 1.21 \cdot 10^{63}$$

- lacktriangleright Grows fast: $M(\mathcal{G}) \geq n^{\Omega(n^2)}$ as $n o \infty$
- ▶ Enormous number of isomorphism classes in same genus

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935) -Any genus \mathcal{G} contains a finite number of isom. classes and its mass

$$M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} \frac{1}{|\operatorname{Aut}(\mathcal{L})|},$$

- ▶ Lemma: $|\mathcal{G}| \geq 2M(\mathcal{G})$. Proof: $|\text{Aut}(\mathcal{L})| \geq 2$.
- ightharpoonup Example: $M(\mathsf{Gen}(\mathbb{Z}^{32})) pprox 4.33 \cdot 10^{16}$

$$M(\mathsf{Gen}(\mathbb{Z}^{40})) \approx 1.21 \cdot 10^{63}$$

- lacktriangleright Grows fast: $M(\mathcal{G}) \geq n^{\Omega(n^2)}$ as $n o \infty$
- ▶ Enormous number of isomorphism classes in same genus
- ▶ Question: do these behave like random lattices?

Definition: distribution over Genus \mathcal{G} . Let $w(\mathcal{L}) =: 1/|\mathrm{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution such that each class $[\mathcal{L}] \in \mathcal{G}$ is sampled with probability $\frac{w(\mathcal{L})}{M(\mathcal{G})}$.

► Coincides with the distribution of random lattices (Haar measure) restricted to a single genus.

Definition: distribution over Genus ----
Let $w(\mathcal{L}) =: 1/|\operatorname{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution such that each class $[\mathcal{L}] \in \mathcal{G}$ is sampled with probability $\frac{w(\mathcal{L})}{M(\mathcal{G})}$.

► Coincides with the distribution of random lattices (Haar measure) restricted to a single genus.

Theorem (informal): good geometric properties [vW, soon on eprint] For any genus $\mathcal G$ (satisfying some minor properties), samples from $\mathcal D(\mathcal G)$ have a packing density, covering radius and smoothing parameter similar to that of random lattices.

(Definition: distribution over Genus)----

Let $w(\mathcal{L}) =: 1/|\mathrm{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution such that each class $[\mathcal{L}] \in \mathcal{G}$ is sampled with probability $\frac{w(\mathcal{L})}{M(\mathcal{G})}$.

► Coincides with the distribution of random lattices (Haar measure) restricted to a single genus.

Theorem (informal): good geometric properties [vW, soon on eprint]

For any genus $\mathcal G$ (satisfying some minor properties), samples from $\mathcal D(\mathcal G)$ have a packing density, covering radius and smoothing parameter similar to that of random lattices.

▶ Proven via other Mass formulas by Siegel (1935)

Definition: distribution over Genus Let $w(\mathcal{L}) =: 1/|\mathrm{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution such that each class $[\mathcal{L}] \in \mathcal{G}$ is sampled with probability $\frac{w(\mathcal{L})}{M(\mathcal{G})}$.

► Coincides with the distribution of random lattices (Haar measure) restricted to a single genus.

```
Theorem (informal): good geometric properties [vW, soon on eprint] For any genus \mathcal{G} (satisfying some minor properties), samples from \mathcal{D}(\mathcal{G}) have a packing density, covering radius and smoothing parameter similar to that of random lattices.
```

- ▶ Proven via other Mass formulas by Siegel (1935)
- lacktriangleright Heuristically, these are the hardest lattices to distinguish.

▶ Two integral lattices $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours $\mathcal{L}_1 \sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=p.$$

lacktriangle Two integral lattices $\mathcal{L}_1,\mathcal{L}_2$ are p-neighbours $\mathcal{L}_1\sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=p.$$

▶ If $\mathcal{L}_1 \sim_p \mathcal{L}_2$ then $Gen(\mathcal{L}_1) = Gen(\mathcal{L}_2)$.

▶ Two integral lattices $\mathcal{L}_1, \mathcal{L}_2$ are *p*-neighbours $\mathcal{L}_1 \sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=\textbf{p}.$$

- ▶ If $\mathcal{L}_1 \sim_p \mathcal{L}_2$ then $\operatorname{Gen}(\mathcal{L}_1) = \operatorname{Gen}(\mathcal{L}_2)$.
- ▶ A lattice has $\sim p^{n-2}$ p-neighburs (\leftrightarrow isotropic lines in $\mathcal{L}/p\mathcal{L}$).

▶ Two integral lattices $\mathcal{L}_1, \mathcal{L}_2$ are *p*-neighbours $\mathcal{L}_1 \sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=\textbf{p}.$$

- ▶ If $\mathcal{L}_1 \sim_p \mathcal{L}_2$ then $\operatorname{Gen}(\mathcal{L}_1) = \operatorname{Gen}(\mathcal{L}_2)$.
- ▶ A lattice has $\sim p^{n-2}$ p-neighburs (\leftrightarrow isotropic lines in $\mathcal{L}/p\mathcal{L}$).

lacktriangle Two integral lattices $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours $\mathcal{L}_1 \sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=p.$$

- ▶ If $\mathcal{L}_1 \sim_p \mathcal{L}_2$ then $Gen(\mathcal{L}_1) = Gen(\mathcal{L}_2)$.
- ▶ A lattice has $\sim p^{n-2}$ p-neighours (\leftrightarrow isotropic lines in $\mathcal{L}/p\mathcal{L}$).
- Turns any genus into a graph with nodes $[\mathcal{L}_1], \ldots, [\mathcal{L}_N]$ and an edge $([\mathcal{L}_i], [\mathcal{L}_i])$ if $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours up to isometry.

$$[\mathcal{L}_1]$$
 $\overline{\qquad}_{\mathcal{L}_1 \sim_{
ho} \mathcal{L}_2} [\mathcal{L}_2]$

lacktriangle Two integral lattices $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours $\mathcal{L}_1 \sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=\textbf{p}.$$

- ▶ If $\mathcal{L}_1 \sim_p \mathcal{L}_2$ then $\operatorname{Gen}(\mathcal{L}_1) = \operatorname{Gen}(\mathcal{L}_2)$.
- ▶ A lattice has $\sim p^{n-2}$ p-neighours (\leftrightarrow isotropic lines in $\mathcal{L}/p\mathcal{L}$).
- Turns any genus into a graph with nodes $[\mathcal{L}_1], \ldots, [\mathcal{L}_N]$ and an edge $([\mathcal{L}_i], [\mathcal{L}_i])$ if $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours up to isometry.

$$[\mathcal{L}_1]$$
 $\overline{\qquad}_{\mathcal{L}_1 \sim_{
ho} \mathcal{L}_2}$ $[\mathcal{L}_2]$

Random walk: $\mathcal{L}_1 \sim_p \mathcal{L}_2 \sim_p \ldots \sim_p \mathcal{L}_k$ where \mathcal{L}_{i+1} is a uniformly randomly p-neighbour of \mathcal{L}_i .

ightharpoonup Two integral lattices $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours $\mathcal{L}_1 \sim_p \mathcal{L}_2$ if

$$[\mathcal{L}_1:\mathcal{L}_1\cap\mathcal{L}_2]=[\mathcal{L}_2:\mathcal{L}_1\cap\mathcal{L}_2]=p.$$

- ▶ If $\mathcal{L}_1 \sim_p \mathcal{L}_2$ then $\operatorname{Gen}(\mathcal{L}_1) = \operatorname{Gen}(\mathcal{L}_2)$.
- ightharpoonup A lattice has $\sim p^{n-2}$ p-neighburs (\leftrightarrow isotropic lines in $\mathcal{L}/p\mathcal{L}$).
- Turns any genus into a graph with nodes $[\mathcal{L}_1], \ldots, [\mathcal{L}_N]$ and an edge $([\mathcal{L}_i], [\mathcal{L}_i])$ if $\mathcal{L}_1, \mathcal{L}_2$ are p-neighbours up to isometry.

$$[\mathcal{L}_1]$$
 $\mathcal{L}_1 \sim_{
ho} \mathcal{L}_2$ $[\mathcal{L}_2]$

- ▶ Random walk: $\mathcal{L}_1 \sim_p \mathcal{L}_2 \sim_p \ldots \sim_p \mathcal{L}_k$ where \mathcal{L}_{i+1} is a uniformly randomly p-neighbour of \mathcal{L}_i .
- For large enough p, a random walk has limit distribution $\mathcal{D}(\mathcal{G})$. \Longrightarrow efficient sampling algorithm for $\mathcal{D}(\mathcal{G})$.

Open Questions

WC-AC reductions: |-

- ightharpoonup the random case $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$ is heuristically the hardest.
- ullet from any class $[\mathcal{L}]\in\mathcal{G}$ we can efficiently step to a random class.

Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

Open Questions

WC-AC reductions: |-

- lacktriangleright the random case $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$ is heuristically the hardest.
- ullet from any class $[\mathcal{L}]\in\mathcal{G}$ we can efficiently step to a random class.

Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

[Better invariants:]-

▶ Can we construct stronger efficiently computable invariants?

Open Questions

(WC-AC reductions:)-

- ▶ the random case $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$ is heuristically the hardest.
- ightharpoonup from any class $[\mathcal{L}] \in \mathcal{G}$ we can efficiently step to a random class.

Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

·(Better invariants:)--

▶ Can we construct stronger efficiently computable invariants?

Structured case:]---

What about module lattices?

- ▶ Can we find (significantly) better algorithms for module-LIP?
- ▶ How strong is a 'module-genus' invariant?

▶ LIP is well studied from a mathematical perspective (long ago!).

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them
- ▶ The genus is the strongest* known efficient invariant for LIP

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them
- ▶ The genus is the strongest* known efficient invariant for LIP
 - ▶ Is not too restricting on the geometry

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them
- ▶ The genus is the strongest* known efficient invariant for LIP
 - ▶ Is not too restricting on the geometry
 - ► Has a deep theory behind it: randomness, *p*-neighbouring, mass formula's

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them
- ▶ The genus is the strongest* known efficient invariant for LIP
 - ▶ Is not too restricting on the geometry
 - ▶ Has a deep theory behind it: randomness, p-neighbouring, mass formula's
 - ▶ Lots of open questions related to the genus

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them
- ▶ The genus is the strongest* known efficient invariant for LIP
 - ▶ Is not too restricting on the geometry
 - ▶ Has a deep theory behind it: randomness, p-neighbouring, mass formula's
 - ▶ Lots of open questions related to the genus
- An exciting new area for mathematical cryptology!

- ▶ LIP is well studied from a mathematical perspective (long ago!).
- ▶ Classical algorithms to solve LIP
 - 1. Compute short vectors
 - 2. Find isometries between them
- ▶ The genus is the strongest* known efficient invariant for LIP
 - ▶ Is not too restricting on the geometry
 - ► Has a deep theory behind it: randomness, *p*-neighbouring, mass formula's
 - ▶ Lots of open questions related to the genus
- ▶ An exciting new area for mathematical cryptology!

Thanks!