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Lattice Isomorphism Problem

L(B1) = £(By)

<
O-L(B1) = L(By) for some O € O4(R)
<~
O0-B;-U=8B, for some O € O4(R), U € GL4(Z)
<~
U'BiBU = B;B, for some U € GLy4(Z)

——
gram matrix

If either O or U is trivial: linear algebra.

Use O'O =1 to remove the orthonormal transformation.

We restrict to integer or rational gram matrices G := B'B.
Solution unique up to Aut(L) ={0 € O,(R): 0-L =L}.
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Encryption scheme from LIP (informal)
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Cryptography from LIP

» LIP as a new hardness assumption

,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----

Use LIP to hide a remarkable lattice:
» Identification, Encryption and Signature scheme

-
-

;[Bennett et al.: Just how hard are rotations of Z”?} -------------- =
i » Encryption scheme based on LIP on Z", !
N e o e o e o e o m m m m E e o e e e e e e e e e e e = = 4
v[Ducas et al.: HAWK scheme} -------------------------------------- -

i Efficient signature scheme based on module-LIP on Z"
i » submitted to NIST call for additional signatures

__________________________________________________________________

» Several others works using LIP appeared recently
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Goal: given isomorphic L£,L’ C R", compute O € O,(R) s.t. L'=0-L.
Idea: isometries preserve lengths and inner products

—> short(est) vectors map to short(est) vectors
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Characteristic Vector Set

«[Definition: characteristic vector set}
V:L— V(L) C LisacCVsif :
(1) V(L) generates L. E
(2) V(0-L)=0-V(L) YO € Ou(R).

______________________________________

» Can be used as a proxy:

Lr=0-L4
p—
V(£2) = 0-V(L1)

as a Set

» Goal: find a limear isometry

O: V(El) — V([,z). 7 / 20



LIP via Graph Isomorphism
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preserves pairwise inner products.
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LIP via Graph Isomorphism

» isometry O:V(L2) — V(L1)
preserves pairwise inner products.
» Idea: this condition is sufficient.
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LIP via Graph Isomorphism

isometry O : V(L) — V(L1)
preserves pairwise inner products.
Idea: this condition is sufficient.
Let Gy) = (V,w) be a complete
weighted graph with:

» V:i=V(L)={vi,...,w}

> w(vi,v) == (vi,v;) Vv, € V.
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LIP via Graph Isomorphism

» isometry O: V(ﬁz) — V(El)
preserves pairwise inner products.
Idea: this condition is sufficient.

Let Gy) = (V,w) be a complete
weighted graph with:

» V:i=V(L)={vi,...,w}
> w(vi,v) == (vi,v;) Vv, € V.
» Then:

L1 = Lo <= Gy(r,) = Gy(ry)

Time complexity: » Problem: possibly |[V(L£)| > 29",
exp(log(|V(£)])°M) . . .
_ O(exp(no(l)) » Canonical graph labeling algorithms

—> canonical form for LIP.

(Dutour Sikirié-Haensch-Voight-vW 2020) 8 / 20
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Plesken-Souvignier (1997)

» Idea: linear isometry f:V(L1) — V(L2) is fully determined by
image on n independent vectors.

» Let vi,...,v, € V(£L1) be independent.
» Backtrack search to determine (compatible) images

f(vi),...,f(vn) € V(L2).

» Prune search tree: once f(v;) =w; for i=1,...,k, then

(F(vicy1), wi) = (F(vir1), F(vi)) = (Viey1, v),

so possible images of w41 are limited.

» Use more invariants to limit search-tree.

n

IV(L)I)> _

» Good in practice, but tree can be as large as O (n! - (

» If V(L) = 29" then 20(") in yorst-case.
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Haviv-Regev (2014)

» Dual lattice:
L' :={weR":VveL ({wv)ecZ}
» Idea: pick w; € L} that canonically
orders V(L;) by values (v, w;).
» If wp = Ow;, then V(L2) = 0-V(L1)
(as ordered lists) == recover O.
» Isolation Lemma: such a w; € L}
exists among the n9(" shortest
vectors of L].
» Haviv-Regev algorithm (informal):
1. Compute V(£;) and n9" shortest

o) vecs §; C L}

p . . . n

Time complexity: n y 2. Isolate wy € 51, wz(l), 300¢ W§N) €S,.
—_— . . (N _

0Q: Can we do better? (2O(n)) 3. Recover isometries from w,’ = Ow; .
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Open Questions

Step 1: Step 2:
compute short vectors compute isometries between them

,[Faster isometry finding:} ....................................... -,
1

E » Can we do step 2 in 20(n) time if searching for a single isometry?

N o m e e m o m m m o m o m o e e e e e e e e e e e e e e e e e e 4
,[Alternative approach?:] ......................................... =

1
i » Can we solve LIP without first finding short vectors? !
Rttt el il re-/ 20
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+(Definition: search LIP (SLIP) f======sssssssssssssooaaaaaooaae .

Given two isomorphic lattices L1, Ly, recover an orthonormal
transformation O € O,(R) such that O - L1 = L>.

’ [Definition: decisional LIP (dLIP)} ------------------------------- -
i Given two lattices L1, Ly, determine whether £1 = L, or not. !
,[Definition: distinguish LIP (zxLIp)] .............................. .

Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
Given L € [Lp], recover b.

» Distinguishing variant is useful for security proofs:

one can replace [£1] by [£2] in security game.
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» Disclaimer: we only consider integral lattices (B'B € Z"*")

Arithmetic Invariants (ari(L))

» det(L) = det(Lp).

» gcd(L) :=ged{(x,y) : x,y € L}

» parity par(L) = ged{||x||*: x € L}/ gcd(L)

» Equivalence over R D Z, U € GL,(R), R € {R,Q,Vp Qp,Vp Zp}
——

Genus

If ari(£1) # ari(L2), then dLIP and ALIP with £1, Ly can be solved :
efficiently. E

= lattices must have same (efficiently computable) invariants



Genus

,[p—adic integers:] ................................................ s

14 / 20



Genus

i=0
R N L L -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

14 / 20



Genus

i=0
R N L L -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank

14 / 20



Genus

i=0
LS R R e e e T e -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank
» Equivalent over Zp, <& Zp®Q L1 = Zp Q Lo

& UTGU = G; for U € GL,(Zp).

14 / 20



Genus

i=0
LS R R e e e T e -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank
» Equivalent over Zp, <& Zp®Q L1 = Zp Q Lo

& UTGU = G; for U € GL,(Zp).

» Covers all the other known arithmetic invariants*

14 / 20



Genus

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R & same rank
» Equivalent over Zp, <& Zp®Q L1 = Zp Q Lo

& UTGU = G; for U € GL,(Zp).
» Covers all the other known arithmetic invariants*

* (we assume here the genus does not split into multiple spinor genera)
14 / 20
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where det(Ggy) # 0 mod p, and each G4 is a diagonal matrix.

» For the diagonal matrices Gq, Zp equivalence is fully determined
by dim(Gg) and the Legendre symbol (%)

» G =y, G’ if the above values match for all q = p'.

» For p{det(G) we have dim(G;) = dim(G) and (%) = (detTfG))
» So only have to consider p|det(G) (needs factorization)

» For p=2 block diagonalizable and a few additional rules.

» How restricting is the genus invariant?
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Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)} ....... .

Any genus G contains a finite number of isom. classes and its mass

1

(£]eg |aut(L)|’

i M(G) = 3

is efficiently computable given the prime factorization of det(G)2.

» Lemma: |G| > 2M(G). Proof: [Aut(L)| > 2. O
» Example: M(Gen(Z%?)) ~ 4.33-10'6
M(Gen(Z*?)) ~ 1.21 - 1053
Grows fast: M(G) > n¥") as n — oo
Enormous number of isomorphism classes in same genus

Question: do these behave like random lattices?
16/20
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Random distribution over genus

[Deflnltlon distribution over Genus} ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability x%g;

» Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

[Theorem (informal): good geometric properties [vW, soon on eprlnt]}

For any genus G (satisfying some minor properties), samples from
D(G) have a packing density, covering radius and smoothing parameter
similar to that of random lattices.

» Proven via other Mass formulas by Siegel (1935)
» Heuristically, these are the hardest lattices to distinguish.
17 / 20
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If L4 ~p Ly then Gen(£1) = Gen(LZz).

A lattice has ~ p" 2 p-neighours (<> isotropic lines in L/pL).
» Turns any genus into a graph with nodes [Li1],...,[Ln] and an edge

([£i), [£;]) if Li1,L are p-neighbours up to isometry.

el r— 2]

» Random walk: Lj~p Ly ~p...~p Ly where Ljy1 is a uniformly
randomly p-neighbour of L;.
» For large enough p, a random walk has limit distribution D(G).
=> efficient sampling algorithm for D(G).
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¢[WC—AC reductions :] ----------------------------------------------- ,

» the random case [£] - D(G) is heuristically the hardest.
» from any class [£] € G we can efficiently step to a random class.
Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

__________________________________________________________________

pe [Better invariants:] --------------------------------------------- -

i » Can we construct stronger efficiently computable invariants?

- [Structured case :] ------------------------------------------------

What about module lattices?

» Can we find (significantly) better algorithms for module-LIP?

» How strong is a ‘module-genus’ invariant?
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