On the existence of good lattice packings and
smoothing within a fixed genus
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Random lattices

» Random lattices are useful in cryptography

» But there are many different notions of randomness

,[Definition: random g-ary 1attices} .............................. -,
E qg>2,0<n<m,let A<+ U(Z™*") and consider L = AZ"+qZ™ C 7Z™. E
» LWE, SIS

» allows for worst-case to average-case reduction

¢[Definition (Siegel 1945): Haar measurej ........................... .

E The Haar measure on SL,(R) has finite mass on the quotient space of
' unit volume lattices SL,(R)/SLp(Z).

» Mathematically elegant and useful for certain proofs
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First minimum

First minimum & theta series

A1(L) := min _||x]2

xe£\{0}
([ ] ] 2
(LSS et et = 14 et
°°0° Minkowski’s Theorem
det(L)/"
® ([ ] v~ 1/n
D000 OET L ==
—

o/ o o) o) e MK(£)

:[Minkowski—Hlawka Theorem:} --------------------------------------- .
i For random lattices E[A1(L£)] = gh(£) := %Mk(ﬁ) ~ \/n/2mwe-det(L)V/". E
E = there exists a lattice with A1(L) > gh(L) E
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Smoothing parameter

L o ,
minimum s > 0 such that centered Gaussian

with width s is e-close to uniform over R"/L’
Ne(L) = min{s > 0: O.«(exp(—7s?)) < 1+ ¢}
Dual lattice
- - " a 5 L :={yeR":Vxe L,(x,y) € Z}
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Smoothing parameter

Smoothing parameter

L o ,
minimum s > 0 such that centered Gaussian

with width s is e-close to uniform over R"/L’

Ne(L) = min{s > 0: 0.+ (exp(—7ns?)) < 1+¢}

Dual lattice
° ° ° ° ° £*:={y €R":Vx € L, (x,y) € Z}
T ™ T T Ma-n(L) < /n/ A1 (L)
v[Good smoothing: € € (e™", 1]] ...................................... .

For a random lattice £*, O.«(exp(—7s?)) < 1+ O(ns~"det(L))
= there exists a lattice with n.(£) < @(ndet(L)/e)Y/".
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Lattice Isomorphism Problem

L(B1) = £(By)

<
O-L(B1) =L(By) for some O € O4(R)
<
O0-B-U=8B, for some O € O4(R), U € GL4(Z)
<
U'B;B,U = B}B; for some U € GL4(Z)

» If either O or U is trivial: linear algebra.
» Use O'0O =1 to remove the orthonormal transformation.
» Restrict to integral or rational gram matrices
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Cryptography from LIP

» LIP as a new hardness assumption

,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----

Use LIP to hide a remarkable lattice:
» Identification, Encryption and Signature scheme

-
-

;[Bennett et al.: Just how hard are rotations of Z”?} -------------- =
i » Encryption scheme based on LIP on Z", !
N e o e o e o e o m m m m E e o e e e e e e e e e e e = = 4
v[Ducas et al.: HAWK scheme} -------------------------------------- -

i Efficient signature scheme based on module-LIP on Z"
i » submitted to NIST call for additional signatures

__________________________________________________________________

» Several others works using LIP appeared recently
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Distinghuish LIP

{Definition: distinguish LIP (A—LIP)] .............................

E Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
' Given L € [Lp], recover b.

» L1,L> can be represented by any (good) gram matrix G, Gy.
» L is represented by a random U' GpU + D([Gp]) (worst-case)

,[Usual security assumption:} ...................................... S

Given:
1. some remarkable lattice L1
2. an auxiliary lattice Ly with certain (good) geometric properties

Then: cryptographic scheme is secure if A-LIP on L3, L, is hard.

Goal: find an auxiliary lattice with the right properties
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Invariants

Arithmetic Invariants (ari(£))

» det(L) = det(Lp).

» gcd(L) :=ged{(x,y) : x,y € L}

» parity par(L) = ged{||x|*: x € £}/ ged(L)

» Equivalence over R D Z, U € GL,(R), R € {R,Q,Vp Qp,Vp Zp}
Tooms

Rk = T R R L -
1

- If ari(Q) # ari(@1), then A LIPY can be solved efficiently.

= auxiliary lattice must have same invariants
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Genus

,[p—adic integers:] ................................................ s
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Genus

i=0
R N L L -
1

i The genus gen(L) of a lattice £ consists of all lattices that are .
! equivalent over R and over Z, for all primes p '

» Equivalent over R < same rank

» Equivalent over Zp, & Zp®Q L1 =7Zp ® Lo
& UTGU = G; for U € GL,(Zp).

» Covers all the other known arithmetic invariants
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,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----.

i Instantiation blows up geometric gaps from f to O(f?) or O(f3). If
' there exists a lattice Lo € gen(L) with geometric gaps of O(1) then
, this reduces to O(f).
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,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----.

i Instantiation blows up geometric gaps from f to O(f?) or O(f3). If
' there exists a lattice Lo € gen(L) with geometric gaps of O(1) then
, this reduces to O(f).

P Bennett et al.: Just how hard are rotations of Z"?J --------------- \
E Do there exist lattices in gen(Z") with A1(L) > Q(/n/log(n)) or with
+ (L) < n=(2")/\/log(n) = \/log(1/€)/log(n) for e < n~<M)7
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,[Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography}----.

i Instantiation blows up geometric gaps from f to O(f?) or O(f3). If
' there exists a lattice Lo € gen(L) with geometric gaps of O(1) then
, this reduces to O(f).

- Bennett et al.: Just how hard are rotations of Z"?} --------------- .
E Do there exist lattices in gen(Z") with A1(L£) > Q(y/n/log(n)) or with ,
! 0(L) < 1.(Z")//log(n) ~ +/log(1/2) Tog(n) for & < n~=(7 5

.| Ackermann, Wallet, et al.: to appear} ............................. .

E Conjecture: for n > 85 there exists at least one L € gen(Z") such
' that A\1(L) > v/72n. E



Results (1) - Good (dual) packing

,[Theorem (good packing): Minkowski-Hlawka theorem for fixed genusj-—

Let G be any genus of dimension n > 6 such that p"~% { det(G)? for
all primes p. Then there exists a lattice £* € G with A\1(L£)? >
[O(wn/ det(L£))~%/"| = n/2me - det(L)?/" = gh(L)?.

__________________________________________________________________
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Results (1) - Good (dual) packing

,[Theorem (good packing): Minkowski-Hlawka theorem for fixed genus}-—

Let G be any genus of dimension n > 6 such that p"~% { det(G)? for
all primes p. Then there exists a lattice £* € G with A\1(L£)? >
[O(wn/ det(L£))~%/"| = n/2me - det(L)?/" = gh(L)?.

__________________________________________________________________

» O can be replaced by a small universal constant
» Essentially matches packing density of a random lattice
» Similar result for simultaneous good primal and dual packing.

» Requirement that p"~°{det(G)? can be replaced by a milder but
more technical condition.
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Results (2) - Good smoothing

¢[Theorem (good smoothing):} ....................................... .

“...” Lete € [e™",1), then there exists a lattice L € G with
ne(£") < B(ndet(L7)/e)r.

» Same conditions as previous result
» Essentially matches smoothing of random lattice
» Works even for constant €

» Also works for € < e™" but smoothing for such cases is
essentially determined by A1(L*).

13 / 26



The tool: mass formulas (1)

v[Definition: distribution over Genus] ----------------------------- -

i Consider the mass function w given by w(L) = 1/|Aut(L)|. For a genus
' G let D(G) be the distribution where each isomorphism class [£] is
, sampled with relative weight w(L).
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' G let D(G) be the distribution where each isomorphism class [£] is
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» [£] € G is sampled from D(G) with probability w(L)/M(L).



The tool: mass formulas (1)

v[Definition: distribution over Genus] ----------------------------- -

i Consider the mass function w given by w(L) = 1/|Aut(L)|. For a genus
' G let D(G) be the distribution where each isomorphism class [£] is
, sampled with relative weight w(L).

__________________________________________________________________

,[Theorem: Smith-Minkowski-Siegel mass formula] .....................

Any genus G contains a finite number of isom. classes and its mass

M(G) = Y w(G), §

[£leg

is efficiently computable given the prime factorization of det(g)z.

e ===

» [£] € G is sampled from D(G) with probability w(L)/M(L).
» Lemma: |G| > 2M(G).



The tool: mass formulas (2)

,[Definition: average theta series} ............................... =

For a genus G its average theta series is given by

Ycreg w(L) - 0.(q)
M(G)

__________________________________________________________________

Og(q) = Ezjep(g) [0c(a)] =
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The tool: mass formulas (2)

Ycreg w(L) - 0.(q)
M(G)

__________________________________________________________________

Og(q) = Ezjep(g) [0c(a)] =

,[Theorem: Siegel-Weil mass formula} ................................ .

The coefficients of @g(q) can be efficiently computed given the prime
factorization of det(G)2.

» Recall that computing (coeff. of) O,(q) is usually extremely hard
» Surprisingly the average is efficient to compute

» 01d but not well known result
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v[Definition: even unimodular lattices] ----------------------------- .
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i The genus G e of Nn-dimensional even unimodular lattices consists of
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Example: even unimodular case (1)

v[Definition: even unimodular lattices] ----------------------------- .

The genus G e of Nn-dimensional even unimodular lattices consists of
all integral lattices of determinant 1 and even parity.

¢[Lemma: mass formula] --------------------------------------------- ~

For n = 8k > 8 we have

m=1

where B; is the i-th Bernoulli number, and o,(m) = 3 4, d* is the sum
of positive divisors function.

) —8k X
: Ogs..(q) = Exx(d®) =1+ Bur Y oa-1(m)q’",

» Gske = {[Es]}, Ogy.(q) =1+ 240q> + 2160g* + 6720¢° + O(q®)
» Og1.(q) =1+6.11-1037¢* + 5.64 - 10~18g* + 7.00 - 10~ 7¢°® +
52.01¢% + 6.63 - 107¢'° + 0(q'?) 16 / 26
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» Idea: recall that:
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Good packing

» Idea: recall that:
OGy.(q) = 146.11 - 103" q?+5.64 - 10 '%¢*+7.00 - 10 "¢°+52.01¢%+0(q"°)
= on expectation there are only
6.11-1073 +5.64-10" +7.00- 10" = 7.00- 10~

non-zero vectors of squared norm < 8.

= there exists a lattice L € Gioge with < 7.00 - 10~7 < 2 non-zero
vectors of squared norm < 8, = A\1(L£)? > 8.

,[Lemma: existence of good packing} ............................... =

m=1

If Z)‘zl N,, < 2, then there exists a lattice L € G s.t. }\1([.',)2 > .

__________________________________________________________________

E Let G be a genus with average theta series Og(q) = 1+ Y o, N,,q™.



Example: even unimodular case (2)

{Lemma: even packing (Serre)} ..................................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- %(%wn)_z/"J ~ n/2me.

18 / 26



Example: even unimodular case (2)

{Lemma: even packing (Serre)} ..................................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- E(%wn)_z/"J ~ n/2me.

e

—— Lemma 4 (lower bound)
[MH+73] (lower bound)

—— Gaussian Heuristic (w, /" ~ \/n/2me)

X Concrete

[\]
N

First minimum A\ (G)

o
s

0 100 200 300 400 500
Dimension (n)
18 / 26



Example: even unimodular case (2)

{Lemma: even packing (Serre)} ..................................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- %(%wn)_z/"J ~ n/2me.

» Essentially same result for odd case

18 / 26



Example: even unimodular case (2)

{Lemma: even packing (Serre)} ..................................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- %(%wn)_z/"J ~ n/2me.

» Essentially same result for odd case

» Self-dual so also good dual packing

18 / 26



Example: even unimodular case (2)

¢[Lemma: even packing (Serre)} ..................................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- %(%wn)_z/"J ~ n/2me.

» Essentially same result for odd case
» Self-dual so also good dual packing

» More generally: sum over primal and dual theta series to lower
bound A1(£) and A1(£*) simultaneously.

18 / 26



Example: even unimodular case (2)

¢[Lemma: even packing (Serre)} ..................................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- %(%wn)_z/"J ~ n/2me.

» Essentially same result for odd case
» Self-dual so also good dual packing

» More generally: sum over primal and dual theta series to lower
bound A1(£) and A1(£*) simultaneously.

» Not aware of similar results for other genera
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good smoothing

» Recall: for the smoothing parameter 7.(L*) we need to bound
Oc(exp(—ms?)) < 1+e.

» Note that for any s > 0 we have

0g(exp(—7s?)) = Eirpyg) |0z (exp(—ms?))]

,[Lemma: existence of good smoothingj ...............................

E For any genus G, let € > 0 and let s > 0 be such that Og(exp(—ms?)) <
' 1+ ¢, then there exists a lattice £ € G such that n.(L*) < s.
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Example: even unimodular lattices (3)

Let n = 8k > 8with k € N, ande € [e™",1), then there exists an

1
n-dimensional even unimodular lattice £ with n.(L£) < (we/n)™ 2.

__________________________________________________________________

-——————=

et T T T e et T IS eI T I I T T IR T T T TTITTTITTYTTYTTTY vee
5251.°

g —— Lemma 5 (upper bound)
20 2.0 e Concrete (¢ = 0.01)

::: e Concrete (¢ = 277/?)
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General case: compute mass formula

» Note that we want to count the average number of solutions N, to
f(x) := x"Gex = y with x € Z" over the randomness of [L] < D(G).
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General case: compute mass formula

» Note that we want to count the average number of solutions N, to
f(x) := x"Gex = y with x € Z" over the randomness of [L] < D(G).
» Idea: compute density dg,p(y) of solutions over Z, and R = Z.

,[Theorem: Siegel-Weil mass formula} ............................... =

For any genus G of dimension > 2 and average theta series Og(q) =
1+ Z;‘;l Ny, q™ we have

Ny, = H dg,p(¥)

» Local-global principle
» Only primes p|2ydet(G)? have to be considered
» Can even be generalized to matrix equations!
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Local density over reals

» For f(x) =x"x=x?+...4+ x> €R the density of solutions for
f(x) =y is essentially the volume of the sphere of radius ,/y.
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Local density over reals

» For f(x)=x"x=x2 + ...+ x2 € R the density of solutions for
1 n y

f(x) =y is essentially the volume of the sphere of radius ,/y.
More precisely we get dj,..0(y) = %m.u,,y"/z_1 = d%(w,,yn/z)

{Lemma: local density at R (p = oo)} ..............................
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Local density over reals

» For f(x) =x"x=x?+...4+ x> €R the density of solutions for
f(x) =y is essentially the volume of the sphere of radius ,/y.

More precisely we get dj,..0(y) = %nw,,y"/z_1 = d%(wny"/z)

{Lemma: local density at R (p = oo)} ..............................
i We have g oo(y) = %nw,,y"/z_1 - det(G)~! ;

» Behaves as expected:

sparser lattice => larger det(G) = smaller coefficients.
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Local density over Z,

» This is where things get complicated, count solutions mod pk
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Local density over Z,

» This is where things get complicated, count solutions mod pk
» Ratio between #solutions x' Gx = y mod pX and p("~Dk for k — oo

» Has only small contribution, e.g.

,[Lemma: Local densities at Z, are bounded} ........................ -

Let G be a genus with p"~> | det(G)? for all primes p, then for all

y > 0 we have
18¢(2)
1) <
AL 2= 50

< 3.52
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Local density over Z,

» This is where things get complicated, count solutions mod pk

(n—1)k

» Ratio between #solutions x' Gx = y mod pX and p for k — oo

» Has only small contribution, e.g.

,[Lemma: Local densities at Z, are boundedj ........................ -

Let G be a genus with p"~> | det(G)? for all primes p, then for all ]
y > 0 we have '

18¢(2)
ng,,... dgp(y) < 7¢3) < 3.52

.{Rough idea: |nmmeccmccmccecccccccmececccccecmcceeceecmmemm————a- =

G~z Go+p-Gi+p? Gy+...with det(G;) # 0 mod p, dim(Gp) > 6
If dG,p(y) < c forally >0, then dgp(y) < c for all y > 0. 1

-



Finalizing
T ~

Let G be any genus with p"~5 { det(G)? for all primes p. Let Og(q) =
1+ Z;‘il Ny q” be its average theta series, then for y > 1 we have

N, < 3.52 . 8g.00(y) < 1.76 - nw,y"/?71 . det(G) 1
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Finalizing
T ~

Let G be any genus with p"~5 { det(G)? for all primes p. Let Og(q) =

1+ Z;‘;l Ny q” be its average theta series, then for y > 1 we have

N, < 3.52 . 8g.00(y) < 1.76 - nw,y"/?71 . det(G) 1

» Tight up to a constant factor
» Sufficient to prove the main results

» Conjecture: remove conditions == extra factor poly(y)
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Conclusion

For any genus G we can show

» the existence of a good and dual packing (simultaneously)
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Conclusion

For any genus G we can show

» the existence of a good and dual packing (simultaneously)
» the existence of a good smoothing even for large € > 0

» by Markov inequality: many good packings/smoothings

We achieve this by

» The quite unknown but beautiful Siegel-Weil mass formula

» Counting solutions in Z,

.| Open questions:}

_________________________________________________ N

» What about other geometric properties?

» What else can we do with these mass formulas?

__________________________________________________________________

-



Thank you! :)

Questions?
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