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Lattices

Lattice

R-linearly independent b1, . . . , bn ∈ Rn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn,

basis B, gram matrix G := B⊤B

Infinitely many distinct bases

B′ = B · U, G ′ = U⊤GU,

for U ∈ GLn(Z).

Lattice volume

det(L) := vol(Rn/L) = | det(B)|

0 b1

b2
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Random lattices

▶ Random lattices are useful in cryptography

▶ But there are many different notions of randomness

q ≥ 2, 0 < n < m, let A← U(Zm×n) and consider L = AZn+qZm ⊂ Zm.

Definition: random q-ary lattices

▶ LWE, SIS

▶ allows for worst-case to average-case reduction

The Haar measure on SLn(R) has finite mass on the quotient space of
unit volume lattices SLn(R)/SLn(Z).

Definition (Siegel 1945): Haar measure

▶ Mathematically elegant and useful for certain proofs
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First minimum

First minimum & theta series

λ1(L) := min
x∈L\{0}

∥x∥2

θL(q) :=
∑

x∈L q∥x∥
2
= 1 + Nλ1qλ2

1 + . . .

Minkowski’s Theorem

λ1(L) ≤ 2
det(L)1/n

vol(Bn)1/n︸ ︷︷ ︸
Mk(L)

≈
√

2n/πe det(L)1/n

0
λ1

v

For random lattices E[λ1(L)] = gh(L) := 1
2 Mk(L) ≈

√
n/2πe ·det(L)1/n.

⇒ there exists a lattice with λ1(L) ≥ gh(L) (∃ good lattice packing)

Minkowski-Hlawka Theorem:
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Smoothing parameter

Smoothing parameter

‘minimum s > 0 such that centered Gaussian
with width s is ϵ-close to uniform over Rn/L’

ηε(L) = min{s > 0 : θL∗(exp(−πs2)) ≤ 1 + ε}

Dual lattice

L∗ := {y ∈ Rn : ∀x ∈ L, ⟨x, y⟩ ∈ Z}
η2−n(L) ≤

√
n/λ1(L∗)

For a random lattice L∗, θL∗(exp(−πs2)) ≤ 1 + O(ns−n det(L))
⇒ there exists a lattice with ηε(L) ≤ θ(n det(L)/ε)1/n.

Good smoothing: ϵ ∈ (e−n, 1]
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Lattice Isomorphism Problem

L(B1) ∼= L(B2)

⇐⇒
O · L(B1) = L(B2) for some O ∈ Od(R)

⇐⇒
O · B1 · U = B2 for some O ∈ Od(R), U ∈ GLd(Z)

▶ If either O or U is trivial: linear algebra.

▶ Use OtO = I to remove the orthonormal transformation.

▶ Restrict to integral or rational gram matrices
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Cryptography from LIP

▶ LIP as a new hardness assumption

Use LIP to hide a remarkable lattice:
▶ Identification, Encryption and Signature scheme

Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography

▶ Encryption scheme based on LIP on Zn,

Bennett et al.: Just how hard are rotations of Zn?

Efficient signature scheme based on module-LIP on Zn

▶ submitted to NIST call for additional signatures

Ducas et al.: HAWK scheme

▶ Several others works using LIP appeared recently
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Distinghuish LIP

Let L1,L2 be two non-isomorphic lattices and let b ← {1, 2} uniform.
Given L ∈ [Lb], recover b.

Definition: distinguish LIP (∆-LIP)

▶ L1,L2 can be represented by any (good) gram matrix G1, G2.

▶ L is represented by a random U⊤GbU ← D([Gb]) (worst-case)

Given:
1. some remarkable lattice L1
2. an auxiliary lattice L2 with certain (good) geometric properties

Then: cryptographic scheme is secure if ∆-LIP on L1,L2 is hard.

Usual security assumption:

Goal: find an auxiliary lattice with the right properties
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Invariants

Arithmetic Invariants (ari(L))
▶ det(L) = det(Lb).

▶ gcd(L) := gcd{⟨x, y⟩ : x, y ∈ L}
▶ parity par(L) = gcd{∥x∥2 : x ∈ L}/ gcd(L)

▶ Equivalence over R ⊃ Z, U ∈ GLn(R), R ∈ {R,Q, ∀p Qp,∀p Zp︸ ︷︷ ︸
Genus

}

If ari(Q0) ̸= ari(Q1), then ∆LIPQ0,Q1 can be solved efficiently.

Lemma:

⇒ auxiliary lattice must have same invariants
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Genus

For a prime p the p-adic integers Zp are given by formal series, i.e.,

Zp =

{∞∑
i=0

ai pi , with 0 ≤ ai < p
}

p-adic integers:

The genus gen(L) of a lattice L consists of all lattices that are
equivalent over R and over Zp for all primes p

Genus:

▶ Equivalent over R ⇔ same rank

▶ Equivalent over Zp ⇔ Zp ⊗ L1 ∼= Zp ⊗ L2
⇔ U⊤G1U = G2 for U ∈ GLn(Zp).

▶ Covers all the other known arithmetic invariants
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Motivation

Instantiation blows up geometric gaps from f to O(f 2) or O(f 3). If
there exists a lattice L2 ∈ gen(L1) with geometric gaps of O(1) then
this reduces to O(f ). (gh(L)/λ1(L) = O(1) for L = L2,L∗

2 )

Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography

Do there exist lattices in gen(Zn) with λ1(L) ≥ Ω(
√

n/ log(n)) or with
ηε(L) ≤ ηε(Zn)/

√
log(n) ≈

√
log(1/ε)/ log(n) for ε < n−ω(1)?

Bennett et al.: Just how hard are rotations of Zn?

Conjecture: for n ≥ 85 there exists at least one L ∈ gen(Zn) such
that λ1(L) ≥ 4√72n. (needed to instantiate their PKE security proof)

Ackermann, Wallet, et al.: to appear
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Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography

Do there exist lattices in gen(Zn) with λ1(L) ≥ Ω(
√

n/ log(n)) or with
ηε(L) ≤ ηε(Zn)/

√
log(n) ≈

√
log(1/ε)/ log(n) for ε < n−ω(1)?

Bennett et al.: Just how hard are rotations of Zn?

Conjecture: for n ≥ 85 there exists at least one L ∈ gen(Zn) such
that λ1(L) ≥ 4√72n. (needed to instantiate their PKE security proof)

Ackermann, Wallet, et al.: to appear
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Results (1) - Good (dual) packing

Let G be any genus of dimension n ≥ 6 such that pn−5 ∤ det(G)2 for
all primes p. Then there exists a lattice L∗ ∈ G with λ1(L)2 ≥
⌈Θ(ωn/ det(L))−2/n⌋ ≈ n/2πe · det(L)2/n = gh(L)2.

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus

▶ Θ can be replaced by a small universal constant

▶ Essentially matches packing density of a random lattice

▶ Similar result for simultaneous good primal and dual packing.

▶ Requirement that pn−5 ∤ det(G)2 can be replaced by a milder but
more technical condition. (or removed at a small loss)
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Results (2) - Good smoothing

‘...’ Let ε ∈ [e−n, 1), then there exists a lattice L ∈ G with
ηε(L∗) ≤ θ(n det(L∗)/ε)

1
n .

Theorem (good smoothing):

▶ Same conditions as previous result

▶ Essentially matches smoothing of random lattice

▶ Works even for constant ε

▶ Also works for ε < e−n but smoothing for such cases is
essentially determined by λ1(L∗).
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The tool: mass formulas (1)

Consider the mass function w given by w(L) = 1/|Aut(L)|. For a genus
G let D(G) be the distribution where each isomorphism class [L] is
sampled with relative weight w(L).

Definition: distribution over Genus

Any genus G contains a finite number of isom. classes and its mass

M(G) :=
∑

[L]∈G
w(G),

is efficiently computable given the prime factorization of det(G)2.

Theorem: Smith-Minkowski-Siegel mass formula

▶ [L] ∈ G is sampled from D(G) with probability w(L)/M(L).
▶ Lemma: |G| ≥ 2M(G).
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The tool: mass formulas (2)

For a genus G its average theta series is given by

ΘG(q) = E[L]←D(G) [θL(q)] =
∑

[L]∈G w(L) · θL(q)
M(G)

Definition: average theta series

The coefficients of ΘG(q) can be efficiently computed given the prime
factorization of det(G)2. (polytime in the input and j for q j )

Theorem: Siegel-Weil mass formula

▶ Recall that computing (coeff. of) θL(q) is usually extremely hard

▶ Surprisingly the average is efficient to compute

▶ Old but not well known result (by experimental validation)
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Example: even unimodular case (1)

The genus Gn,e of n-dimensional even unimodular lattices consists of
all integral lattices of determinant 1 and even parity.

Definition: even unimodular lattices

For n = 8k ≥ 8 we have

ΘG8k,e(q) = E4k(q2) = 1 +
−8k
B4k

∞∑
m=1

σ4k−1(m)q2m,

where Bi is the i-th Bernoulli number, and σz(m) =
∑

d |m d z is the sum
of positive divisors function.

Lemma: mass formula

▶ G8k,e = {[E8]}, ΘG8,e(q) = 1 + 240q2 + 2160q4 + 6720q6 + O(q8)

▶ ΘG128,e(q) = 1 + 6.11 · 10−37q2 + 5.64 · 10−18q4 + 7.00 · 10−7q6 +

52.01q8 + 6.63 · 107q10 + O(q12)
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Good packing

▶ Idea: recall that:

ΘG128,e(q) = 1+6.11 · 10−37q2+5.64 · 10−18q4+7.00 · 10−7q6+52.01q8+O(q10)

⇒ on expectation there are only

6.11 · 10−37 + 5.64 · 10−18 + 7.00 · 10−7 = 7.00 · 10−7

non-zero vectors of squared norm < 8.

⇒ there exists a lattice L ∈ G128,e with ≤ 7.00 · 10−7 < 2 non-zero
vectors of squared norm < 8, ⇒ λ1(L)2 ≥ 8.

Let G be a genus with average theta series ΘG(q) = 1 +
∑∞

m=1 Nmqm.
If

∑λ
m=1 Nm < 2, then there exists a lattice L ∈ G s.t. λ1(L)2 > λ.

Lemma: existence of good packing
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Example: even unimodular case (2)

Let n = 8k ≥ 8 with k ∈ N, then there exists an n-dimensional even
unimodular lattice L with λ1(L)2 ≥ 2 ·

⌈
1
2(

3
5ωn)−2/n

⌋
≈ n/2πe.

Lemma: even packing (Serre)

▶ Essentially same result for odd case (by Conway & Thompson)

▶ Self-dual so also good dual packing

▶ More generally: sum over primal and dual theta series to lower
bound λ1(L) and λ1(L∗) simultaneously.

▶ Not aware of similar results for other genera
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good smoothing

▶ Recall: for the smoothing parameter ηε(L∗) we need to bound
θL(exp(−πs2)) ≤ 1 + ε.

▶ Note that for any s > 0 we have

θG(exp(−πs2)) = E[L]←D(G)
[
θL(exp(−πs2))

]

For any genus G, let ε > 0 and let s > 0 be such that ΘG(exp(−πs2)) ≤
1 + ε, then there exists a lattice L ∈ G such that ηε(L∗) ≤ s.

Lemma: existence of good smoothing
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Example: even unimodular lattices (3)

Let n = 8k ≥ 8 with k ∈ N, and ε ∈ [e−n, 1), then there exists an
n-dimensional even unimodular lattice L with ηε(L) ≤ (πε/n)−

1
n+2 .

Lemma: even smoothing
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General case: compute mass formula

▶ Note that we want to count the average number of solutions Ny to
f (x) := x⊤GLx = y with x ∈ Zn over the randomness of [L]← D(G).

▶ Idea: compute density δG,p(y) of solutions over Zp and R = Z∞.

For any genus G of dimension ≥ 2 and average theta series ΘG(q) =
1 +

∑∞
y=1 Nyqm we have

Ny =
∏

p=2,3,...,∞
δG,p(y)

Theorem: Siegel-Weil mass formula

▶ Local-global principle
▶ Only primes p|2y det(G)2 have to be considered
▶ Can even be generalized to matrix equations!

(mass formula from M(G) follows from equation U⊤GU = G)
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f (x) := x⊤GLx = y with x ∈ Zn over the randomness of [L]← D(G).

▶ Idea: compute density δG,p(y) of solutions over Zp and R = Z∞.

For any genus G of dimension ≥ 2 and average theta series ΘG(q) =
1 +

∑∞
y=1 Nyqm we have
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Local density over reals

▶ For f (x) = x⊤x = x2
1 + . . . + x2

n ∈ R the density of solutions for
f (x) = y is essentially the volume of the sphere of radius

√y.

▶ More precisely we get δIn,∞(y) = 1
2nωnyn/2−1 = d

dy (ωnyn/2)

We have δG,∞(y) = 1
2nωnyn/2−1 · det(G)−1

Lemma: local density at R (p =∞)

▶ Behaves as expected:

sparser lattice ⇒ larger det(G) ⇒ smaller coefficients.



22 / 26

Local density over reals

▶ For f (x) = x⊤x = x2
1 + . . . + x2

n ∈ R the density of solutions for
f (x) = y is essentially the volume of the sphere of radius

√y.

▶ More precisely we get δIn,∞(y) = 1
2nωnyn/2−1 = d

dy (ωnyn/2)

We have δG,∞(y) = 1
2nωnyn/2−1 · det(G)−1

Lemma: local density at R (p =∞)

▶ Behaves as expected:

sparser lattice ⇒ larger det(G) ⇒ smaller coefficients.



22 / 26

Local density over reals

▶ For f (x) = x⊤x = x2
1 + . . . + x2

n ∈ R the density of solutions for
f (x) = y is essentially the volume of the sphere of radius

√y.

▶ More precisely we get δIn,∞(y) = 1
2nωnyn/2−1 = d

dy (ωnyn/2)

We have δG,∞(y) = 1
2nωnyn/2−1 · det(G)−1

Lemma: local density at R (p =∞)

▶ Behaves as expected:

sparser lattice ⇒ larger det(G) ⇒ smaller coefficients.



22 / 26

Local density over reals

▶ For f (x) = x⊤x = x2
1 + . . . + x2

n ∈ R the density of solutions for
f (x) = y is essentially the volume of the sphere of radius

√y.

▶ More precisely we get δIn,∞(y) = 1
2nωnyn/2−1 = d

dy (ωnyn/2)

We have δG,∞(y) = 1
2nωnyn/2−1 · det(G)−1

Lemma: local density at R (p =∞)

▶ Behaves as expected:

sparser lattice ⇒ larger det(G) ⇒ smaller coefficients.



22 / 26

Local density over reals

▶ For f (x) = x⊤x = x2
1 + . . . + x2

n ∈ R the density of solutions for
f (x) = y is essentially the volume of the sphere of radius

√y.

▶ More precisely we get δIn,∞(y) = 1
2nωnyn/2−1 = d

dy (ωnyn/2)

We have δG,∞(y) = 1
2nωnyn/2−1 · det(G)−1

Lemma: local density at R (p =∞)

▶ Behaves as expected:

sparser lattice ⇒ larger det(G) ⇒ smaller coefficients.



23 / 26

Local density over Zp

▶ This is where things get complicated, count solutions mod pk

▶ Ratio between #solutions x⊤Gx = y mod pk and p(n−1)k for k →∞
▶ Has only small contribution, e.g.

Let G be a genus with pn−5 ∤ det(G)2 for all primes p, then for all
y ≥ 0 we have ∏

p=2,3,...

δG,p(y) ≤
18ζ(2)
7ζ(3)

< 3.52

Lemma: Local densities at Zp are bounded

G ∼Zp G0 + p · G1 + p2 · G2 + . . . with det(Gi) ̸= 0 mod p, dim(G0) ≥ 6
If δG0,p(y) ≤ c for all y ≥ 0, then δG,p(y) ≤ c for all y ≥ 0.

Rough idea:
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Finalizing

Let G be any genus with pn−5 ∤ det(G)2 for all primes p. Let ΘG(q) =
1 +

∑∞
y=1 Nyqy be its average theta series, then for y ≥ 1 we have

Ny ≤ 3.52 · δG,∞(y) ≤ 1.76 · nωnyn/2−1 · det(G)−1

Theorem:

▶ Tight up to a constant factor

▶ Sufficient to prove the main results

▶ Conjecture: remove conditions =⇒ extra factor poly(y)
(but rather tedious to work out)
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Conclusion

For any genus G we can show

▶ the existence of a good and dual packing (simultaneously)

▶ the existence of a good smoothing even for large ε > 0
▶ by Markov inequality: many good packings/smoothings

We achieve this by

▶ The quite unknown but beautiful Siegel-Weil mass formula

▶ Counting solutions in Zp

▶ What about other geometric properties?

▶ What else can we do with these mass formulas?

Open questions:
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Thank you! :)

Questions?



26 / 26

Thank you! :)

Questions?


