On the existence of good lattice packings and smoothing within a fixed genus

Wessel van Woerden (Université de Bordeaux, IMB, Inria).

<u>Lattice</u>

$$\mathbb{R}$$
-linearly independent $\mathbf{b_1},\dots,\mathbf{b_n}\in\mathbb{R}^n$ $\mathcal{L}(B):=\{\sum_i x_i b_i: x\in\mathbb{Z}^n\}\subset\mathbb{R}^n,$ basis B , gram matrix $G:=B^\top B$

<u>Lattice</u>

 \mathbb{R} -linearly independent $b_1, \ldots, b_n \in \mathbb{R}^n$

$$\mathcal{L}(B) := \{ \sum_i x_i b_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n,$$

basis B, gram matrix $G := B^{\top}B$

Lattice volume

$$\det(\mathcal{L}) := \operatorname{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|$$

<u>Lattice</u>

 \mathbb{R} -linearly independent $\mathbf{b}_1,\dots,\mathbf{b}_n\in\mathbb{R}^n$ $\mathcal{L}(B):=\{\sum_i x_i b_i: x\in\mathbb{Z}^n\}\subset\mathbb{R}^n,$ basis B, gram matrix $G:=B^{\top}B$

Lattice volume

$$\det(\mathcal{L}) := \text{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|$$

Infinitely many distinct bases

$$B' = B \cdot U, \ G' = U^{\top}GU,$$
 for $U \in \mathcal{GL}_n(\mathbb{Z}).$

<u>Lattice</u>

 \mathbb{R} -linearly independent $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ $\mathcal{L}(B) := \{ \sum_i x_i \mathbf{b}_i : x \in \mathbb{Z}^n \} \subset \mathbb{R}^n,$

basis B, gram matrix $G := B^{\top}B$

Lattice volume

$$\det(\mathcal{L}) := \text{vol}(\mathbb{R}^n/\mathcal{L}) = |\det(B)|$$

Infinitely many distinct bases

$$B' = B \cdot U, \ G' = U^{\top}GU,$$
 for $U \in \mathcal{GL}_n(\mathbb{Z}).$

▶ Random lattices are useful in cryptography

- ▶ Random lattices are useful in cryptography
- ▶ But there are many different notions of randomness

- ▶ Random lattices are useful in cryptography
- ▶ But there are many different notions of randomness

- ▶ Random lattices are useful in cryptography
- ▶ But there are many different notions of randomness

```
Definition: random q-ary lattices q \geq 2, 0 < n < m, \text{ let } A \leftarrow \mathcal{U}(\mathbb{Z}^{m \times n}) \text{ and consider } \mathcal{L} = A\mathbb{Z}^n + q\mathbb{Z}^m \subset \mathbb{Z}^m.
```

- ▶ Random lattices are useful in cryptography
- ▶ But there are many different notions of randomness

```
Definition: random q-ary lattices q \geq 2, 0 < n < m, let A \leftarrow \mathcal{U}(\mathbb{Z}^{m \times n}) and consider \mathcal{L} = A\mathbb{Z}^n + q\mathbb{Z}^m \subset \mathbb{Z}^m.
```

- ► LWE, SIS
- ▶ allows for worst-case to average-case reduction

- Random lattices are useful in cryptography
- ▶ But there are many different notions of randomness

```
Definition: random q-ary lattices q \geq 2, 0 < n < m, let A \leftarrow \mathcal{U}(\mathbb{Z}^{m \times n}) and consider \mathcal{L} = A\mathbb{Z}^n + q\mathbb{Z}^m \subset \mathbb{Z}^m.
```

- ▶ LWE, SIS
- ▶ allows for worst-case to average-case reduction

```
Definition (Siegel 1945): Haar measure -----

The Haar measure on \mathcal{SL}_n(\mathbb{R}) has finite mass on the quotient space of unit volume lattices \mathcal{SL}_n(\mathbb{R})/\mathcal{SL}_n(\mathbb{Z}).
```

- ▶ Random lattices are useful in cryptography
- ▶ But there are many different notions of randomness

```
Definition: random q-ary lattices q \geq 2, 0 < n < m, let A \leftarrow \mathcal{U}(\mathbb{Z}^{m \times n}) and consider \mathcal{L} = A\mathbb{Z}^n + q\mathbb{Z}^m \subset \mathbb{Z}^m.
```

- ▶ LWE, SIS
- ▶ allows for worst-case to average-case reduction

```
Definition (Siegel 1945): Haar measure _-----

The Haar measure on \mathcal{SL}_n(\mathbb{R}) has finite mass on the quotient space of unit volume lattices \mathcal{SL}_n(\mathbb{R})/\mathcal{SL}_n(\mathbb{Z}).
```

▶ Mathematically elegant and useful for certain proofs

First minimum

First minimum & theta series

$$\lambda_1(\mathcal{L}) := \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$$

$$heta_{\mathcal{L}}(q) := \sum_{x \in \mathcal{L}} q^{\|x\|^2} = 1 + N_{\lambda_1} q^{\lambda_1^2} + \dots$$

First minimum

First minimum & theta series

$$\lambda_1(\mathcal{L}) := \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$$

$$heta_{\mathcal{L}}(q) := \sum_{\mathbf{x} \in \mathcal{L}} q^{\|\mathbf{x}\|^2} = 1 + N_{\lambda_1} q^{\lambda_1^2} + \dots$$

$$\lambda_1(\mathcal{L}) \leq \underbrace{2rac{rac{ ext{Minkowski's Theorem}}{\det(\mathcal{L})^{1/n}}}_{ ext{Nk}(\mathcal{L})} pprox \sqrt{2n/\pi e} \det(\mathcal{L})^{1/n}}_{ ext{Mk}(\mathcal{L})}$$

First minimum

First minimum & theta series

$$\lambda_1(\mathcal{L}) := \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$$

$$heta_{\mathcal{L}}(q) := \sum_{x \in \mathcal{L}} q^{\|x\|^2} = 1 + N_{\lambda_1} q^{\lambda_1^2} + \dots$$

$$\lambda_1(\mathcal{L}) \leq 2 rac{\overline{\det(\mathcal{L})^{1/n}}}{rac{\det(\mathcal{L})^{1/n}}{\det(\mathcal{L})}} pprox \sqrt{2n/\pi e} \det(\mathcal{L})^{1/n}$$

Minkowski-Hlawka Theorem:

For random lattices
$$\mathbb{E}[\lambda_1(\mathcal{L})] = \mathsf{gh}(\mathcal{L}) := \frac{1}{2}\,\mathsf{Mk}(\mathcal{L}) pprox \sqrt{n/2\pi e} \cdot \mathsf{det}(\mathcal{L})^{1/n}$$
.

 \Rightarrow there exists a lattice with $\lambda_1(\mathcal{L}) \geq \mathsf{gh}(\mathcal{L})$ (\exists good lattice packing)

Smoothing parameter

'minimum s>0 such that centered Gaussian with width s is ϵ -close to uniform over \mathbb{R}^n/\mathcal{L} ,

Smoothing parameter

'minimum s>0 such that centered Gaussian with width s is ϵ -close to uniform over \mathbb{R}^n/\mathcal{L} ',

Smoothing parameter

'minimum s>0 such that centered Gaussian with width s is ϵ -close to uniform over \mathbb{R}^n/\mathcal{L} ',

Smoothing parameter

'minimum s>0 such that centered Gaussian with width s is ϵ -close to uniform over \mathbb{R}^n/\mathcal{L} '

$$\eta_{arepsilon}(\mathcal{L}) = \min\{s > 0: heta_{\mathcal{L}^*}(\exp(-\pi s^2)) \leq 1 + arepsilon\}$$

Dual lattice

$$\mathcal{L}^* := \{ y \in \mathbb{R}^n : \forall x \in \mathcal{L}, \langle x, y \rangle \in \mathbb{Z} \}$$

$$\eta_{2^{-n}}(\mathcal{L}) \leq \sqrt{n}/\lambda_1(\mathcal{L}^*)$$

Smoothing parameter

'minimum s>0 such that centered Gaussian with width s is ϵ -close to uniform over \mathbb{R}^n/\mathcal{L} ,' $n_{\varepsilon}(\mathcal{L})=\min\{s>0: \theta_{\mathcal{L}^*}(\exp(-\pi s^2))<1+\varepsilon\}$

Dual lattice

$$\mathcal{L}^* := \{ y \in \mathbb{R}^n : \forall x \in \mathcal{L}, \langle x, y \rangle \in \mathbb{Z} \}$$

$$\eta_{2^{-n}}(\mathcal{L}) \leq \sqrt{n}/\lambda_1(\mathcal{L}^*)$$

Good smoothing:
$$\epsilon \in (e^{-n},1]$$

For a random lattice \mathcal{L}^* , $\overline{ heta_{\mathcal{L}^*}}(\exp(-\pi s^2)) \leq 1 + O(ns^{-n}\det(\mathcal{L}))$

 \Rightarrow there exists a lattice with $\eta_{arepsilon}(\mathcal{L}) \leq heta(n\det(\mathcal{L})/arepsilon)^{1/n}$.

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff
 $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$
 \iff
 $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff
 $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$
 \iff
 $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$

lacksquare If either $oldsymbol{0}$ or $oldsymbol{U}$ is trivial: linear algebra.

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff
 $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$
 \iff
 $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$
 \iff
 $U^tB_1^tB_1U=B_2^tB_2$ for some $U\in \mathrm{GL}_d(\mathbb{Z})$

- lacktriangleright If either $oldsymbol{O}$ or $oldsymbol{U}$ is trivial: linear algebra.
- lacktriangle Use $O^tO=I$ to remove the orthonormal transformation.

$$\mathcal{L}(B_1)\cong\mathcal{L}(B_2)$$
 \iff $O\cdot\mathcal{L}(B_1)=\mathcal{L}(B_2)$ for some $O\in O_d(\mathbb{R})$ \iff $O\cdot B_1\cdot U=B_2$ for some $O\in O_d(\mathbb{R}), U\in \mathrm{GL}_d(\mathbb{Z})$ \iff $U^tB_1^tB_1U=B_2^tB_2$ for some $U\in \mathrm{GL}_d(\mathbb{Z})$

- ightharpoonup If either O or U is trivial: linear algebra.
- ▶ Use $O^tO = I$ to remove the orthonormal transformation.
- ▶ Restrict to integral or rational gram matrices

▶ LIP as a new hardness assumption

▶ LIP as a new hardness assumption

```
Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography
```

Use LIP to hide a remarkable lattice:

 \blacktriangleright Identification, Encryption and Signature scheme

▶ LIP as a new hardness assumption

```
Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography ---- Use LIP to hide a remarkable lattice:
```

lacktriangleright Identification, Encryption and Signature scheme

```
Bennett et al.: Just how hard are rotations of \mathbb{Z}^n?
```

▶ Encryption scheme based on LIP on \mathbb{Z}^n ,

▶ LIP as a new hardness assumption

```
Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography ----
Use LIP to hide a remarkable lattice:

► Identification, Encryption and Signature scheme
```

```
Bennett et al.: Just how hard are rotations of \mathbb{Z}^n?
```

▶ Encryption scheme based on LIP on \mathbb{Z}^n ,

```
Ducas et al.: HAWK scheme
```

Efficient signature scheme based on module-LIP on \mathbb{Z}^n

- ▶ submitted to NIST call for additional signatures
- ▶ Several others works using LIP appeared recently

Distinghuish LIP

Definition: distinguish LIP $(\Delta$ -LIP) Let $\mathcal{L}_1, \mathcal{L}_2$ be two non-isomorphic lattices and let $b \leftarrow \{1,2\}$ uniform. Given $\mathcal{L} \in [\mathcal{L}_b]$, recover b.

Distinghuish LIP

```
Definition: distinguish LIP (\Delta-LIP) Let \mathcal{L}_1, \mathcal{L}_2 be two non-isomorphic lattices and let b \leftarrow \{1,2\} uniform. Given \mathcal{L} \in [\mathcal{L}_b], recover b.
```

- $ightharpoonup \mathcal{L}_1, \mathcal{L}_2$ can be represented by any (good) gram matrix G_1, G_2 .
- $m{\mathcal{L}}$ is represented by a random $m{U}^{ op}m{G}_bm{U}\leftarrow\mathcal{D}([m{G}_b])$ (worst-case)

Distinghuish LIP

Definition: distinguish LIP (Δ -LIP)

Let $\mathcal{L}_1, \mathcal{L}_2$ be two non-isomorphic lattices and let $b \leftarrow \{1,2\}$ uniform. Given $\mathcal{L} \in [\mathcal{L}_b]$, recover b.

- $ightharpoonup \mathcal{L}_1, \mathcal{L}_2$ can be represented by any (good) gram matrix G_1, G_2 .
- $m{\mathcal{L}}$ is represented by a random $m{U}^{ op} m{G}_b m{U} \leftarrow \mathcal{D}([m{G}_b])$ (worst-case)

Usual security assumption: ----

Given:

- 1. some remarkable lattice \mathcal{L}_1
- 2. an auxiliary lattice \mathcal{L}_2 with certain (good) geometric properties

Then: cryptographic scheme is secure if Δ -LIP on $\mathcal{L}_1, \mathcal{L}_2$ is hard.

Distinghuish LIP

Definition: distinguish LIP (Δ -LIP)

Let $\mathcal{L}_1, \mathcal{L}_2$ be two non-isomorphic lattices and let $b \leftarrow \{1,2\}$ uniform. Given $\mathcal{L} \in [\mathcal{L}_b]$, recover b.

- $ightharpoonup \mathcal{L}_1, \mathcal{L}_2$ can be represented by any (good) gram matrix G_1, G_2 .
- $m{\mathcal{L}}$ is represented by a random $m{U}^{ op} m{G}_b m{U} \leftarrow \mathcal{D}([m{G}_b])$ (worst-case)

Usual security assumption: }-----

Given:

- 1. some remarkable lattice \mathcal{L}_1
- 2. an auxiliary lattice \mathcal{L}_2 with certain (good) geometric properties

Then: cryptographic scheme is secure if Δ -LIP on $\mathcal{L}_1,\mathcal{L}_2$ is hard.

Goal: find an auxiliary lattice with the right properties

Arithmetic Invariants $(ari(\mathcal{L}))$

- ▶ parity $par(\mathcal{L}) = gcd\{||x||^2 : x \in \mathcal{L}\}/gcd(\mathcal{L})$

Arithmetic Invariants $(ari(\mathcal{L}))$

- ▶ parity $par(\mathcal{L}) = gcd\{||x||^2 : x \in \mathcal{L}\}/gcd(\mathcal{L})$
- ▶ Equivalence over $R \supset \mathbb{Z}$, $U \in GL_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \underbrace{\forall p \ \mathbb{Z}_p}_{Ganus}\}$

```
Arithmetic Invariants (ari(\mathcal{L}))
```

- ▶ parity $par(\mathcal{L}) = gcd\{||x||^2 : x \in \mathcal{L}\}/gcd(\mathcal{L})$
- ▶ Equivalence over $R \supset \mathbb{Z}$, $U \in GL_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \underbrace{\forall p \ \mathbb{Z}_p}_{Gauss}\}$

```
Lemma:
```

If $\operatorname{ari}(Q_0) \neq \operatorname{ari}(Q_1)$, then $\Delta \operatorname{LIP}^{Q_0,Q_1}$ can be solved efficiently.

```
Arithmetic Invariants (ari(\mathcal{L}))
```

- ▶ parity $par(\mathcal{L}) = gcd\{||x||^2 : x \in \mathcal{L}\}/gcd(\mathcal{L})$
- ▶ Equivalence over $R \supset \mathbb{Z}$, $U \in GL_n(R)$, $R \in \{\mathbb{R}, \mathbb{Q}, \forall p \ \mathbb{Q}_p, \underbrace{\forall p \ \mathbb{Z}_p}_{Ganus}\}$

⇒ auxiliary lattice must have same invariants

$$(p-adic integers:)$$

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_p = \left\{ \sum_{i=0}^\infty a_i p^i, \quad ext{with } 0 \leq a_i$$

Genus

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{oldsymbol{
ho}} = \left\{ \sum_{i=0}^{\infty} a_i oldsymbol{
ho}^i, \quad ext{with } 0 \leq a_i < oldsymbol{
ho}
ight\}$$

(Genus:)

The genus $\operatorname{gen}(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{oldsymbol{
ho}} = \left\{ \sum_{i=0}^{\infty} a_i oldsymbol{
ho}^i, \quad ext{with } 0 \leq a_i < oldsymbol{
ho}
ight\}$$

Genus:

The genus $gen(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

▶ Equivalent over $\mathbb{R} \Leftrightarrow \mathtt{same} \ \mathtt{rank}$

Genus

p-adic integers: -

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{p} = \left\{ \sum_{i=0}^{\infty} a_{i} p^{i}, \quad ext{with } 0 \leq a_{i}$$

Genus:

The genus $\operatorname{gen}(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

- ▶ Equivalent over $\mathbb{R} \Leftrightarrow \mathtt{same} \ \mathtt{rank}$
- $\begin{array}{ll} \blacktriangleright & \text{Equivalent over } \mathbb{Z}_p \Leftrightarrow \mathbb{Z}_p \otimes \mathcal{L}_1 \cong \mathbb{Z}_p \otimes \mathcal{L}_2 \\ & \Leftrightarrow & \pmb{U}^\top \pmb{G}_1 \pmb{U} = \pmb{G}_2 \text{ for } \pmb{U} \in \mathcal{GL}_n(\mathbb{Z}_p). \end{array}$

Genus

| **p**-adic integers: |--

For a prime ${m p}$ the ${m p}$ -adic integers ${\mathbb Z}_{{m p}}$ are given by formal series, i.e.,

$$\mathbb{Z}_{p} = \left\{ \sum_{i=0}^{\infty} a_{i} p^{i}, \quad ext{with } 0 \leq a_{i}$$

Genus:

The genus $gen(\mathcal{L})$ of a lattice \mathcal{L} consists of all lattices that are equivalent over \mathbb{R} and over \mathbb{Z}_p for all primes p

- ▶ Equivalent over $\mathbb{R} \Leftrightarrow \mathsf{same}\ \mathsf{rank}$
- ► Equivalent over $\mathbb{Z}_p \Leftrightarrow \mathbb{Z}_p \otimes \mathcal{L}_1 \cong \mathbb{Z}_p \otimes \mathcal{L}_2$ $\Leftrightarrow U^\top G_1 U = G_2 \text{ for } U \in \mathcal{GL}_p(\mathbb{Z}_p).$
- ▶ Covers all the other known arithmetic invariants

Motivation

Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography]--Instantiation blows up geometric gaps from f to $O(f^2)$ or $O(f^3)$. If
there exists a lattice $\mathcal{L}_2 \in \operatorname{gen}(\mathcal{L}_1)$ with geometric gaps of O(1) then
this reduces to O(f). $(\operatorname{gh}(\mathcal{L})/\lambda_1(\mathcal{L}) = O(1)$ for $\mathcal{L} = \mathcal{L}_2, \mathcal{L}_2^*)$

Motivation

Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography——Instantiation blows up geometric gaps from f to $O(f^2)$ or $O(f^3)$. If there exists a lattice $\mathcal{L}_2 \in \operatorname{gen}(\mathcal{L}_1)$ with geometric gaps of O(1) then this reduces to O(f). $(\operatorname{gh}(\mathcal{L})/\lambda_1(\mathcal{L}) = O(1)$ for $\mathcal{L} = \mathcal{L}_2, \mathcal{L}_2^*)$

Bennett et al.: Just how hard are rotations of \mathbb{Z}^n ?

Do there exist lattices in $\text{gen}(\mathbb{Z}^n)$ with $\lambda_1(\mathcal{L}) \geq \Omega(\sqrt{n/\log(n)})$ or with $\eta_{\varepsilon}(\mathcal{L}) \leq \eta_{\varepsilon}(\mathbb{Z}^n)/\sqrt{\log(n)} \approx \sqrt{\log(1/\varepsilon)/\log(n)}$ for $\varepsilon < n^{-\omega(1)}$?

Motivation

Ducas & vW: On LIP, QFs, Remarkable Lattices, and Cryptography

Instantiation blows up geometric gaps from f to $O(f^2)$ or $O(f^3)$. If there exists a lattice $\mathcal{L}_2 \in \operatorname{gen}(\mathcal{L}_1)$ with geometric gaps of O(1) then this reduces to O(f). $(\operatorname{gh}(\mathcal{L})/\lambda_1(\mathcal{L}) = O(1)$ for $\mathcal{L} = \mathcal{L}_2, \mathcal{L}_2^*)$

Bennett et al.: Just how hard are rotations of \mathbb{Z}^n ?

Do there exist lattices in $\operatorname{gen}(\mathbb{Z}^n)$ with $\lambda_1(\mathcal{L}) \geq \Omega(\sqrt{n/\log(n)})$ or with $\eta_{\varepsilon}(\mathcal{L}) \leq \eta_{\varepsilon}(\mathbb{Z}^n)/\sqrt{\log(n)} \approx \sqrt{\log(1/\varepsilon)/\log(n)}$ for $\varepsilon < n^{-\omega(1)}$?

Ackermann, Wallet, et al.: to appear |---

Conjecture: for $n \geq 85$ there exists at least one $\mathcal{L} \in \text{gen}(\mathbb{Z}^n)$ such that $\lambda_1(\mathcal{L}) \geq \sqrt[4]{72n}$. (needed to instantiate their PKE security proof)

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus)--Let $\mathcal G$ be any genus of dimension $n\geq 6$ such that $p^{n-5}\nmid \det(\mathcal G)^2$ for all primes p. Then there exists a lattice $\mathcal L^*\in \mathcal G$ with $\lambda_1(\mathcal L)^2\geq \lceil\Theta(\omega_n/\det(\mathcal L))^{-2/n}\rfloor\approx n/2\pi e\cdot\det(\mathcal L)^{2/n}=\operatorname{gh}(\mathcal L)^2$.

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus]. Let $\mathcal G$ be any genus of dimension $n\geq 6$ such that $p^{n-5}\nmid \det(\mathcal G)^2$ for all primes p. Then there exists a lattice $\mathcal L^*\in \mathcal G$ with $\lambda_1(\mathcal L)^2\geq \lceil\Theta(\omega_n/\det(\mathcal L))^{-2/n}\rfloor\approx n/2\pi e\cdot\det(\mathcal L)^{2/n}=\operatorname{gh}(\mathcal L)^2$.

- lackbox Θ can be replaced by a small universal constant
- ▶ Essentially matches packing density of a random lattice

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus]. Let $\mathcal G$ be any genus of dimension $n\geq 6$ such that $p^{n-5}\nmid \det(\mathcal G)^2$ for all primes p. Then there exists a lattice $\mathcal L^*\in \mathcal G$ with $\lambda_1(\mathcal L)^2\geq \lceil\Theta(\omega_n/\det(\mathcal L))^{-2/n}\rfloor\approx n/2\pi e\cdot\det(\mathcal L)^{2/n}=\operatorname{gh}(\mathcal L)^2$.

- lackbox $oldsymbol{\Theta}$ can be replaced by a small universal constant
- ▶ Essentially matches packing density of a random lattice
- lacktriangleright Similar result for simultaneous good primal and dual packing.

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus)-Let $\mathcal G$ be any genus of dimension $n\geq 6$ such that $p^{n-5}\nmid \det(\mathcal G)^2$ for all primes p. Then there exists a lattice $\mathcal L^*\in \mathcal G$ with $\lambda_1(\mathcal L)^2\geq \lceil\Theta(\omega_n/\det(\mathcal L))^{-2/n}\rfloor\approx n/2\pi e\cdot\det(\mathcal L)^{2/n}=\operatorname{gh}(\mathcal L)^2$.

- lackbox Can be replaced by a small universal constant
- Essentially matches packing density of a random lattice
- lacktriangleright Similar result for simultaneous good primal and dual packing.
- Requirement that $p^{n-5} \nmid \det(\mathcal{G})^2$ can be replaced by a milder but more technical condition. (or removed at a small loss)

```
Theorem (good smoothing): \text{`...' Let } \varepsilon \in [e^{-n},1), \text{ then there exists a lattice } \mathcal{L} \in \mathcal{G} \text{ with } \\ \eta_\varepsilon(\mathcal{L}^*) \leq \theta(n\det(\mathcal{L}^*)/\varepsilon)^{\frac{1}{n}}.
```

```
Theorem (good smoothing): \text{`...' Let } \varepsilon \in [e^{-n},1), \text{ then there exists a lattice } \mathcal{L} \in \mathcal{G} \text{ with } \\ \eta_\varepsilon(\mathcal{L}^*) \leq \theta(n\det(\mathcal{L}^*)/\varepsilon)^{\frac{1}{n}}.
```

▶ Same conditions as previous result

```
Theorem (good smoothing):  \text{`...' Let } \varepsilon \in [e^{-n},1), \text{ then there exists a lattice } \mathcal{L} \in \mathcal{G} \text{ with } \\ \eta_\varepsilon(\mathcal{L}^*) \leq \theta(n\det(\mathcal{L}^*)/\varepsilon)^{\frac{1}{n}}.
```

- ▶ Same conditions as previous result
- ▶ Essentially matches smoothing of random lattice

```
Theorem (good smoothing):  \text{`...' Let } \varepsilon \in [e^{-n},1), \text{ then there exists a lattice } \mathcal{L} \in \mathcal{G} \text{ with } \\ \eta_\varepsilon(\mathcal{L}^*) \leq \theta(n\det(\mathcal{L}^*)/\varepsilon)^{\frac{1}{n}}.
```

- ▶ Same conditions as previous result
- Essentially matches smoothing of random lattice
- ightharpoonup Works even for constant arepsilon

```
Theorem (good smoothing):  \text{`...' Let } \varepsilon \in [e^{-n},1), \text{ then there exists a lattice } \mathcal{L} \in \mathcal{G} \text{ with } \\ \eta_\varepsilon(\mathcal{L}^*) \leq \theta(n\det(\mathcal{L}^*)/\varepsilon)^{\frac{1}{n}}.
```

- ▶ Same conditions as previous result
- Essentially matches smoothing of random lattice
- lacktriangle Works even for constant arepsilon
- lacktriangleright Also works for $arepsilon < e^{-n}$ but smoothing for such cases is essentially determined by $\lambda_1(\mathcal{L}^*)$.

Definition: distribution over Genus }-

Consider the mass function w given by $w(\mathcal{L}) = 1/|\mathrm{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution where each isomorphism class $[\mathcal{L}]$ is sampled with relative weight $w(\mathcal{L})$.

Theorem: Smith-Minkowski-Siegel mass formula -----

Any genus ${\mathcal G}$ contains a finite number of isom. classes and its mass

$$M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} w(G),$$

is efficiently computable given the prime factorization of $\det(\mathcal{G})^2$.

Definition: distribution over Genus --

Consider the mass function w given by $w(\mathcal{L}) = 1/|\mathrm{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution where each isomorphism class $[\mathcal{L}]$ is sampled with relative weight $w(\mathcal{L})$.

Theorem: Smith-Minkowski-Siegel mass formula]-----

Any genus ${\mathcal G}$ contains a finite number of isom. classes and its mass

$$M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} w(G),$$

is efficiently computable given the prime factorization of $\det(\mathcal{G})^2$.

▶ $[\mathcal{L}] \in \mathcal{G}$ is sampled from $\mathcal{D}(\mathcal{G})$ with probability $w(\mathcal{L})/M(\mathcal{L})$.

Definition: distribution over Genus)--

Consider the mass function w given by $w(\mathcal{L}) = 1/|\mathrm{Aut}(\mathcal{L})|$. For a genus \mathcal{G} let $\mathcal{D}(\mathcal{G})$ be the distribution where each isomorphism class $[\mathcal{L}]$ is sampled with relative weight $w(\mathcal{L})$.

Theorem: Smith-Minkowski-Siegel mass formula -----

Any genus ${\mathcal G}$ contains a finite number of isom. classes and its mass

$$M(\mathcal{G}) := \sum_{[\mathcal{L}] \in \mathcal{G}} w(G),$$

is efficiently computable given the prime factorization of $\det(\mathcal{G})^2$.

- lacksquare $[\mathcal{L}] \in \mathcal{G}$ is sampled from $\mathcal{D}(\mathcal{G})$ with probability $w(\mathcal{L})/M(\mathcal{L})$.
- ▶ Lemma: $|\mathcal{G}| \ge 2M(\mathcal{G})$.

Definition: average theta series

For a genus ${\cal G}$ its average theta series is given by

$$\Theta_{\mathcal{G}}(q) = \mathbb{E}_{[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})} \left[\theta_{\mathcal{L}}(q) \right] = \frac{\sum_{[\mathcal{L}] \in \mathcal{G}} w(\mathcal{L}) \cdot \theta_{\mathcal{L}}(q)}{M(\mathcal{G})}$$

Definition: average theta series

For a genus ${\mathcal G}$ its average theta series is given by

$$\Theta_{\mathcal{G}}(q) = \mathbb{E}_{[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})} \left[\theta_{\mathcal{L}}(q) \right] = \frac{\sum_{[\mathcal{L}] \in \mathcal{G}} w(\mathcal{L}) \cdot \theta_{\mathcal{L}}(q)}{M(\mathcal{G})}$$

Theorem: Siegel-Weil mass formula ------

The coefficients of $\Theta_{\mathcal{G}}(q)$ can be efficiently computed given the prime factorization of $\det(\mathcal{G})^2$. (polytime in the input and j for q^j)

Definition: average theta series ---

For a genus ${\mathcal G}$ its average theta series is given by

$$\Theta_{\mathcal{G}}(q) = \mathbb{E}_{[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})} \left[\theta_{\mathcal{L}}(q) \right] = \frac{\sum_{[\mathcal{L}] \in \mathcal{G}} w(\mathcal{L}) \cdot \theta_{\mathcal{L}}(q)}{M(\mathcal{G})}$$

Theorem: Siegel-Weil mass formula -----

The coefficients of $\Theta_{\mathcal{G}}(q)$ can be efficiently computed given the prime factorization of $\det(\mathcal{G})^2$. (polytime in the input and j for q^j)

ightharpoonup Recall that computing (coeff. of) $heta_{\mathcal{L}}(q)$ is usually extremely hard

Definition: average theta series ----

For a genus ${\cal G}$ its average theta series is given by

$$\Theta_{\mathcal{G}}(q) = \mathbb{E}_{[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})} \left[\theta_{\mathcal{L}}(q) \right] = \frac{\sum_{[\mathcal{L}] \in \mathcal{G}} w(\mathcal{L}) \cdot \theta_{\mathcal{L}}(q)}{M(\mathcal{G})}$$

Theorem: Siegel-Weil mass formula -----

The coefficients of $\Theta_{\mathcal{G}}(q)$ can be efficiently computed given the prime factorization of $\det(\mathcal{G})^2$. (polytime in the input and j for q^j)

- lacktriangleright Recall that computing (coeff. of) $heta_{\mathcal{L}}(oldsymbol{q})$ is usually extremely hard
- ▶ Surprisingly the average is efficient to compute

Definition: average theta series

For a genus ${\mathcal G}$ its average theta series is given by

$$\Theta_{\mathcal{G}}(q) = \mathbb{E}_{[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})} \left[\theta_{\mathcal{L}}(q) \right] = \frac{\sum_{[\mathcal{L}] \in \mathcal{G}} w(\mathcal{L}) \cdot \theta_{\mathcal{L}}(q)}{M(\mathcal{G})}$$

Theorem: Siegel-Weil mass formula

The coefficients of $\Theta_{\mathcal{G}}(q)$ can be efficiently computed given the prime factorization of $\det(\mathcal{G})^2$. (polytime in the input and j for q^j)

- ightharpoonup Recall that computing (coeff. of) $heta_{\mathcal{L}}(q)$ is usually extremely hard
- ▶ Surprisingly the average is efficient to compute
- ▶ Old but not well known result (by experimental validation)

Definition: even unimodular lattices ----
The genus $\mathcal{G}_{n,e}$ of n-dimensional even unimodular lattices consists of all integral lattices of determinant 1 and even parity.

Definition: even unimodular lattices |----

The genus $\mathcal{G}_{n,e}$ of n-dimensional even unimodular lattices consists of all integral lattices of determinant 1 and even parity.

(Lemma: mass formula)-

For n = 8k > 8 we have

$$\Theta_{\mathcal{G}_{8k,e}}(q) = E_{4k}(q^2) = 1 + \frac{-8k}{B_{4k}} \sum_{m=1}^{\infty} \sigma_{4k-1}(m)q^{2m},$$

where B_i is the *i*-th Bernoulli number, and $\sigma_z(m) = \sum_{d|m} d^z$ is the sum of positive divisors function.

Definition: even unimodular lattices ---

The genus $\mathcal{G}_{n,e}$ of n-dimensional even unimodular lattices consists of all integral lattices of determinant 1 and even parity.

(Lemma: mass formula)-

For n = 8k > 8 we have

$$\Theta_{\mathcal{G}_{8k,e}}(q) = E_{4k}(q^2) = 1 + \frac{-8k}{B_{4k}} \sum_{m=1}^{\infty} \sigma_{4k-1}(m)q^{2m},$$

where B_i is the *i*-th Bernoulli number, and $\sigma_z(m) = \sum_{d|m} d^z$ is the sum of positive divisors function.

$$\mathcal{G}_{8k,e} = \{[E_8]\}, \ \Theta_{\mathcal{G}_{8,e}}(q) = 1 + 240q^2 + 2160q^4 + 6720q^6 + O(q^8)$$

The genus $\mathcal{G}_{n,e}$ of n-dimensional even unimodular lattices consists of all integral lattices of determinant 1 and even parity.

Lemma: mass formula - For
$$n = 8k \ge 8$$
 we have

Definition: even unimodular lattices -

$$\Theta_{\mathcal{G}_{8k,e}}(q) = E_{4k}(q^2) = 1 + \frac{-8k}{B_{4k}} \sum_{m=1}^{\infty} \sigma_{4k-1}(m)q^{2m},$$

where B_i is the i-th Bernoulli number, and $\sigma_z(m) = \sum_{d|m} d^z$ is the sum of positive divisors function.

$$\mathcal{G}_{8k,e} = \{ [E_8] \}, \ \Theta_{\mathcal{G}_{8,e}}(q) = 1 + 240q^2 + 2160q^4 + 6720q^6 + O(q^8)$$

$$\mathcal{O}_{\mathcal{G}_{128,e}}(q) = 1 + 6.11 \cdot 10^{-37}q^2 + 5.64 \cdot 10^{-18}q^4 + 7.00 \cdot 10^{-7}q^6 + 52.01q^8 + 6.63 \cdot 10^7q^{10} + O(q^{12})$$

Good packing

▶ Idea: recall that:

$$\Theta_{\mathcal{G}_{128,e}}(q) = 1 + 6.11 \cdot 10^{-37} q^2 + 5.64 \cdot 10^{-18} q^4 + 7.00 \cdot 10^{-7} q^6 + 52.01 q^8 + O(q^{10})$$

Good packing

▶ Idea: recall that:

$$\Theta_{\mathcal{G}_{128,e}}(q) = 1 + 6.11 \cdot 10^{-37} q^2 + 5.64 \cdot 10^{-18} q^4 + 7.00 \cdot 10^{-7} q^6 + 52.01 q^8 + O(q^{10})$$

 \Rightarrow on expectation there are only

$$6.11 \cdot 10^{-37} + 5.64 \cdot 10^{-18} + 7.00 \cdot 10^{-7} = 7.00 \cdot 10^{-7}$$

non-zero vectors of squared norm < 8.

Good packing

▶ Idea: recall that:

$$\Theta_{\mathcal{G}_{128,e}}(q) = 1 + 6.11 \cdot 10^{-37} q^2 + 5.64 \cdot 10^{-18} q^4 + 7.00 \cdot 10^{-7} q^6 + 52.01 q^8 + O(q^{10})$$

 \Rightarrow on expectation there are only

$$6.11 \cdot 10^{-37} + 5.64 \cdot 10^{-18} + 7.00 \cdot 10^{-7} = 7.00 \cdot 10^{-7}$$

non-zero vectors of squared norm < 8.

 \Rightarrow there exists a lattice $\mathcal{L} \in \mathcal{G}_{128,e}$ with $\leq 7.00 \cdot 10^{-7} < 2$ non-zero vectors of squared norm < 8, $\Rightarrow \lambda_1(\mathcal{L})^2 \geq 8$.

Good packing

▶ Idea: recall that:

$$\Theta_{\mathcal{G}_{128,e}}(q) = 1 + 6.11 \cdot 10^{-37} q^2 + 5.64 \cdot 10^{-18} q^4 + 7.00 \cdot 10^{-7} q^6 + 52.01 q^8 + O(q^{10})$$

 \Rightarrow on expectation there are only

$$6.11 \cdot 10^{-37} + 5.64 \cdot 10^{-18} + 7.00 \cdot 10^{-7} = 7.00 \cdot 10^{-7}$$

non-zero vectors of squared norm < 8.

Lemma: existence of good packing ---

 \Rightarrow there exists a lattice $\mathcal{L} \in \mathcal{G}_{128,e}$ with $\leq 7.00 \cdot 10^{-7} < 2$ non-zero vectors of squared norm < 8, $\Rightarrow \lambda_1(\mathcal{L})^2 \geq 8$.

Let
$$\mathcal G$$
 be a genus with average theta series $\Theta_{\mathcal G}(q)=1+\sum_{m=1}^\infty N_mq^m$. If $\sum_{m=1}^\lambda N_m<2$, then there exists a lattice $\mathcal L\in\mathcal G$ s.t. $\lambda_1(\mathcal L)^2>\lambda$.

Lemma: even packing (Serre) Let $n=8k\geq 8$ with $k\in\mathbb{N}$, then there exists an n-dimensional even unimodular lattice \mathcal{L} with $\lambda_1(\mathcal{L})^2\geq 2\cdot\left\lceil\frac{1}{2}(\frac{3}{5}\omega_n)^{-2/n}\right
vert pprox n/2\pi e$.

Lemma: even packing (Serre) Let $n=8k\geq 8$ with $k\in\mathbb{N}$, then there exists an n-dimensional even unimodular lattice $\mathcal L$ with $\lambda_1(\mathcal L)^2\geq 2\cdot\left[\frac12(\frac35\omega_n)^{-2/n}\right]\approx n/2\pi e$.


```
Lemma: even packing (Serre) Let n=8k\geq 8 with k\in\mathbb{N}, then there exists an n-dimensional even unimodular lattice \mathcal{L} with \lambda_1(\mathcal{L})^2\geq 2\cdot\left\lceil\frac{1}{2}(\frac{3}{5}\omega_n)^{-2/n}\right\rceil\approx n/2\pi e.
```

► Essentially same result for odd case (by Conway & Thompson)

Lemma: even packing (Serre) Let $n=8k\geq 8$ with $k\in\mathbb{N}$, then there exists an n-dimensional even unimodular lattice \mathcal{L} with $\lambda_1(\mathcal{L})^2\geq 2\cdot\left\lceil\frac{1}{2}(\frac{3}{5}\omega_n)^{-2/n}\right\rceil\approx n/2\pi e$.

- ▶ Essentially same result for odd case (by Conway & Thompson)
- Self-dual so also good dual packing

Lemma: even packing (Serre) Let $n=8k\geq 8$ with $k\in\mathbb{N}$, then there exists an n-dimensional even unimodular lattice \mathcal{L} with $\lambda_1(\mathcal{L})^2\geq 2\cdot\left\lceil\frac{1}{2}(\frac{3}{5}\omega_n)^{-2/n}\right\rceil\approx n/2\pi e$.

- ► Essentially same result for odd case (by Conway & Thompson)
- ▶ Self-dual so also good dual packing
- ▶ More generally: sum over primal and dual theta series to lower bound $\lambda_1(\mathcal{L})$ and $\lambda_1(\mathcal{L}^*)$ simultaneously.

Lemma: even packing (Serre) Let $n=8k\geq 8$ with $k\in\mathbb{N}$, then there exists an n-dimensional even unimodular lattice \mathcal{L} with $\lambda_1(\mathcal{L})^2\geq 2\cdot\left[\frac{1}{2}(\frac{3}{5}\omega_n)^{-2/n}\right]\approx n/2\pi e$.

- ▶ Essentially same result for odd case (by Conway & Thompson)
- Self-dual so also good dual packing
- ▶ More generally: sum over primal and dual theta series to lower bound $\lambda_1(\mathcal{L})$ and $\lambda_1(\mathcal{L}^*)$ simultaneously.
- ▶ Not aware of similar results for other genera

good smoothing

- Recall: for the smoothing parameter $\eta_{\varepsilon}(\mathcal{L}^*)$ we need to bound $\theta_{\mathcal{L}}(\exp(-\pi s^2)) \leq 1 + \varepsilon$.
- ▶ Note that for any s>0 we have

$$heta_{\mathcal{G}}(\exp(-\pi s^2)) = \mathbb{E}_{[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})} \left[heta_{\mathcal{L}}(\exp(-\pi s^2))
ight]$$

Lemma: existence of good smoothing

For any genus \mathcal{G} , let $\varepsilon > 0$ and let s > 0 be such that $\Theta_{\mathcal{G}}(\exp(-\pi s^2)) \le 1 + \varepsilon$, then there exists a lattice $\mathcal{L} \in \mathcal{G}$ such that $\eta_{\varepsilon}(\mathcal{L}^*) \le s$.

19 / 2

Example: even unimodular lattices (3)

Lemma: even smoothing Let $n=8k\geq 8$ with $k\in\mathbb{N}$, and $\varepsilon\in[e^{-n},1)$, then there exists an n-dimensional even unimodular lattice $\mathcal L$ with $\eta_\varepsilon(\mathcal L)\leq (\pi\varepsilon/n)^{-\frac{1}{n+2}}$.

Note that we want to count the average number of solutions N_y to $f(x) := x^\top G_{\mathcal{L}} x = y$ with $x \in \mathbb{Z}^n$ over the randomness of $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$.

- Note that we want to count the average number of solutions N_y to $f(x) := x^\top G_{\mathcal{L}} x = y$ with $x \in \mathbb{Z}^n$ over the randomness of $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$.
- ▶ Idea: compute density $\delta_{G,p}(y)$ of solutions over \mathbb{Z}_p and $\mathbb{R} = \mathbb{Z}_{\infty}$.

- Note that we want to count the average number of solutions N_y to $f(x) := x^\top G_{\mathcal{L}} x = y$ with $x \in \mathbb{Z}^n$ over the randomness of $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$.
- ▶ Idea: compute density $\delta_{\mathcal{G},p}(y)$ of solutions over \mathbb{Z}_p and $\mathbb{R} = \mathbb{Z}_{\infty}$.

Theorem: Siegel-Weil mass formula -----

For any genus $\mathcal G$ of dimension ≥ 2 and average theta series $\Theta_{\mathcal G}(q)=1+\sum_{v=1}^\infty N_v q^m$ we have

$$N_y = \prod_{p=2,3,...,\infty} \delta_{\mathcal{G},p}(y)$$

- Note that we want to count the average number of solutions N_y to $f(x) := x^\top G_{\mathcal{L}} x = y$ with $x \in \mathbb{Z}^n$ over the randomness of $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$.
- ▶ Idea: compute density $\delta_{\mathcal{G},p}(y)$ of solutions over \mathbb{Z}_p and $\mathbb{R} = \mathbb{Z}_{\infty}$.

Theorem: Siegel-Weil mass formula -----

For any genus $\mathcal G$ of dimension ≥ 2 and average theta series $\Theta_{\mathcal G}(q)=1+\sum_{v=1}^\infty N_v q^m$ we have

$$N_{y} = \prod_{p=2,3,\ldots,\infty} \delta_{\mathcal{G},p}(y)$$

▶ Local-global principle

- Note that we want to count the average number of solutions N_y to $f(x) := x^\top G_{\mathcal{L}} x = y$ with $x \in \mathbb{Z}^n$ over the randomness of $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$.
- ▶ Idea: compute density $\delta_{\mathcal{G},p}(y)$ of solutions over \mathbb{Z}_p and $\mathbb{R} = \mathbb{Z}_{\infty}$.

Theorem: Siegel-Weil mass formula -----

For any genus $\mathcal G$ of dimension ≥ 2 and average theta series $\Theta_{\mathcal G}(q)=1+\sum_{v=1}^\infty N_v q^m$ we have

$$N_{y} = \prod_{p=2,3,\ldots,\infty} \delta_{\mathcal{G},p}(y)$$

- ▶ Local-global principle
- ▶ Only primes $p|2y \det(\mathcal{G})^2$ have to be considered

- Note that we want to count the average number of solutions N_y to $f(x) := x^\top G_{\mathcal{L}} x = y$ with $x \in \mathbb{Z}^n$ over the randomness of $[\mathcal{L}] \leftarrow \mathcal{D}(\mathcal{G})$.
- ▶ Idea: compute density $\delta_{\mathcal{G},p}(y)$ of solutions over \mathbb{Z}_p and $\mathbb{R} = \mathbb{Z}_{\infty}$.

For any genus $\mathcal G$ of dimension ≥ 2 and average theta series $\Theta_{\mathcal G}(q)=1+\sum_{v=1}^\infty N_v q^m$ we have

$$N_{y} = \prod_{p=2,3,...,\infty} \delta_{\mathcal{G},p}(y)$$

- ▶ Local-global principle
- ▶ Only primes $p|2y \det(\mathcal{G})^2$ have to be considered
- ▶ Can even be generalized to matrix equations! (mass formula from $M(\mathcal{G})$ follows from equation $U^{\top}GU = G$)

For $f(x) = x^{\top}x = x_1^2 + \ldots + x_n^2 \in \mathbb{R}$ the density of solutions for f(x) = y is essentially the volume of the sphere of radius \sqrt{y} .

- For $f(x) = x^{\top}x = x_1^2 + \ldots + x_n^2 \in \mathbb{R}$ the density of solutions for f(x) = y is essentially the volume of the sphere of radius \sqrt{y} .
- lacktriangle More precisely we get $\delta_{I_n,\infty}(y)=rac{1}{2}n\omega_ny^{n/2-1}=rac{d}{dv}(\omega_ny^{n/2})$

- For $f(x) = x^{\top}x = x_1^2 + \ldots + x_n^2 \in \mathbb{R}$ the density of solutions for f(x) = y is essentially the volume of the sphere of radius \sqrt{y} .
- lacktriangle More precisely we get $\delta_{I_n,\infty}(y)=rac{1}{2}n\omega_ny^{n/2-1}=rac{d}{dv}(\omega_ny^{n/2})$

- For $f(x) = x^{\top}x = x_1^2 + \ldots + x_n^2 \in \mathbb{R}$ the density of solutions for f(x) = y is essentially the volume of the sphere of radius \sqrt{y} .
- lacktriangle More precisely we get $\delta_{I_n,\infty}(y)=rac{1}{2}n\omega_n y^{n/2-1}=rac{d}{dv}(\omega_n y^{n/2})$

Lemma: local density at
$$\mathbb{R}$$
 $(m{p}=\infty)$. We have $\delta_{\mathcal{G},\infty}(m{y})=rac{1}{2}n\omega_nm{y}^{n/2-1}\cdot\det(\mathcal{G})^{-1}$

- For $f(x) = x^{\top}x = x_1^2 + \ldots + x_n^2 \in \mathbb{R}$ the density of solutions for f(x) = y is essentially the volume of the sphere of radius \sqrt{y} .
- lacktriangleright More precisely we get $\delta_{I_n,\infty}(y)=rac{1}{2}n\omega_ny^{n/2-1}=rac{d}{dy}(\omega_ny^{n/2})$

▶ Behaves as expected: sparser lattice \Rightarrow larger $\det(\mathcal{G}) \Rightarrow$ smaller coefficients.

Local density over \mathbb{Z}_{p}

ightharpoonup This is where things get complicated, count solutions mod p^k

Local density over \mathbb{Z}_{p}

- ightharpoonup This is where things get complicated, count solutions mod p^k
- Ratio between #solutions $x^{\top}Gx = y \mod p^k$ and $p^{(n-1)k}$ for $k \to \infty$

Local density over \mathbb{Z}_p

- ightharpoonup This is where things get complicated, count solutions mod p^k
- Ratio between #solutions $x^{\top}Gx = y \mod p^k$ and $p^{(n-1)k}$ for $k \to \infty$
- ▶ Has only small contribution, e.g.

Local density over \mathbb{Z}_p

- ightharpoonup This is where things get complicated, count solutions mod p^k
- Ratio between #solutions $x^{\top}Gx = y \mod p^k$ and $p^{(n-1)k}$ for $k \to \infty$
- ▶ Has only small contribution, e.g.

Local density over \mathbb{Z}_p

- ightharpoonup This is where things get complicated, count solutions mod ho^k
- ▶ Ratio between #solutions $x^{\top}Gx = y \mod p^k$ and $p^{(n-1)k}$ for $k \to \infty$
- ▶ Has only small contribution, e.g.

Lemma: Local densities at \mathbb{Z}_p are bounded Let \mathcal{G} be a genus with $p^{n-5} \nmid \det(\mathcal{G})^2$ for all primes p, then for all $y \geq 0$ we have $\prod_{p=2,3,\dots} \delta_{\mathcal{G},p}(y) \leq \frac{18\zeta(2)}{7\zeta(3)} < 3.52$

Local density over \mathbb{Z}_{p}

- \blacktriangleright This is where things get complicated, count solutions mod p^k
- ▶ Ratio between #solutions $x^{\top}Gx = y \mod p^k$ and $p^{(n-1)k}$ for $k \to \infty$
- ▶ Has only small contribution, e.g.

Lemma: Local densities at $\mathbb{Z}_{m{p}}$ are bounded -----

Let \mathcal{G} be a genus with $p^{n-5} \nmid \det(\mathcal{G})^2$ for all primes p, then for all

$$y \geq 0$$
 we have

$$\prod_{egin{subarray}{c} egin{subarray}{c} eta_{\mathcal{G},
ho}(m{y}) \leq rac{18\zeta(2)}{7\zeta(3)} < 3.52 \end{array}$$

 $\overbrace{G \sim_{\mathbb{Z}_p} G_0 + p \cdot G_1 + p^2 \cdot G_2 + \dots \text{ with } \det(G_i) \neq 0 \text{ mod } p, \dim(G_0) \geq 6}$ If $\delta_{G_0,p}(y) < c$ for all y > 0, then $\delta_{G,p}(y) < c$ for all y > 0.

Theorem:

Let \mathcal{G} be any genus with $p^{n-5} \nmid \det(\mathcal{G})^2$ for all primes p. Let $\Theta_{\mathcal{G}}(q) = 1 + \sum_{v=1}^{\infty} N_v q^v$ be its average theta series, then for $y \geq 1$ we have

$$N_{\mathbf{y}} \leq 3.52 \cdot \delta_{\mathcal{G},\infty}(\mathbf{y}) \leq 1.76 \cdot n\omega_n \mathbf{y}^{n/2-1} \cdot \det(\mathcal{G})^{-1}$$

Theorem: -

Let \mathcal{G} be any genus with $p^{n-5} \nmid \det(\mathcal{G})^2$ for all primes p. Let $\Theta_{\mathcal{G}}(q) = 1 + \sum_{v=1}^{\infty} N_v q^v$ be its average theta series, then for $y \geq 1$ we have

$$N_{\mathsf{y}} \leq 3.52 \cdot \delta_{\mathcal{G},\infty}(\mathsf{y}) \leq 1.76 \cdot n\omega_n \mathsf{y}^{n/2-1} \cdot \det(\mathcal{G})^{-1}$$

▶ Tight up to a constant factor

Theorem: -

Let \mathcal{G} be any genus with $p^{n-5} \nmid \det(\mathcal{G})^2$ for all primes p. Let $\Theta_{\mathcal{G}}(q) = 1 + \sum_{v=1}^{\infty} N_v q^v$ be its average theta series, then for $y \geq 1$ we have

$$N_{\mathsf{y}} \leq 3.52 \cdot \delta_{\mathcal{G},\infty}(\mathsf{y}) \leq 1.76 \cdot n\omega_n \mathsf{y}^{n/2-1} \cdot \det(\mathcal{G})^{-1}$$

- ▶ Tight up to a constant factor
- ▶ Sufficient to prove the main results

Theorem: -

Let \mathcal{G} be any genus with $p^{n-5} \nmid \det(\mathcal{G})^2$ for all primes p. Let $\Theta_{\mathcal{G}}(q) =$ $1+\sum_{v=1}^{\infty} N_v q^y$ be its average theta series, then for $y\geq 1$ we have

$$N_{y} \leq 3.52 \cdot \delta_{\mathcal{G},\infty}(y) \leq 1.76 \cdot n\omega_{n}y^{n/2-1} \cdot \det(\mathcal{G})^{-1}$$

- ▶ Tight up to a constant factor
- Sufficient to prove the main results
- Conjecture: remove conditions \implies extra factor poly(y)(but rather tedious to work out)

For any genus ${\cal G}$ we can show

▶ the existence of a good and dual packing (simultaneously)

For any genus ${\cal G}$ we can show

- ▶ the existence of a good and dual packing (simultaneously)
- lacktriangleright the existence of a good smoothing even for large arepsilon>0

For any genus ${\cal G}$ we can show

- ▶ the existence of a good and dual packing (simultaneously)
- lacktriangleright the existence of a good smoothing even for large arepsilon>0
- ▶ by Markov inequality: many good packings/smoothings

For any genus ${\cal G}$ we can show

- ▶ the existence of a good and dual packing (simultaneously)
- lacktriangleright the existence of a good smoothing even for large arepsilon>0
- ▶ by Markov inequality: many good packings/smoothings

We achieve this by

▶ The quite unknown but beautiful Siegel-Weil mass formula

For any genus ${\cal G}$ we can show

- ▶ the existence of a good and dual packing (simultaneously)
- lacktriangleright the existence of a good smoothing even for large arepsilon>0
- ▶ by Markov inequality: many good packings/smoothings

We achieve this by

- ▶ The quite unknown but beautiful Siegel-Weil mass formula
- ▶ Counting solutions in \mathbb{Z}_{p}

For any genus ${\cal G}$ we can show

- ▶ the existence of a good and dual packing (simultaneously)
- lacktriangleright the existence of a good smoothing even for large arepsilon>0
- ▶ by Markov inequality: many good packings/smoothings

We achieve this by

- ▶ The quite unknown but beautiful Siegel-Weil mass formula
- ▶ Counting solutions in \mathbb{Z}_{p}

```
Open questions:
```

- \blacktriangleright What about other geometric properties?
- ▶ What else can we do with these mass formulas?

Thank you! :)
Questions?

