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Abstract. A natural and recurring idea in the knapsack/lattice cryp-
tography literature is to start from a lattice with remarkable decoding
capability as your private key, and hide it somehow to make a public key.
This is also how the code-based encryption scheme of McEliece (1978)
proceeds.
This idea has never worked out very well for lattices: ad-hoc approaches
have been proposed, but they have been subject to ad-hoc attacks, us-
ing tricks beyond lattice reduction algorithms. On the other hand the
framework offered by the Short Integer Solution (SIS) and Learning With
Errors (LWE) problems, while convenient and well founded, remains frus-
trating from a coding perspective: the underlying decoding algorithms
are rather trivial, with poor decoding performance.
In this work, we provide generic realizations of this natural idea (inde-
pendently of the chosen remarkable lattice) by basing cryptography on
the lattice isomorphism problem (LIP). More specifically, we provide:
– a worst-case to average-case reduction for search-LIP and distinguish-

LIP within an isomorphism class, by extending techniques of Haviv
and Regev (SODA 2014).

– a zero-knowledge proof of knowledge (ZKPoK) of an isomorphism.
This implies an identification scheme based on search-LIP.

– a key encapsulation mechanism (KEM) scheme and a hash-then-sign
signature scheme, both based on distinguish-LIP.

The purpose of this approach is for remarkable lattices to improve the
security and performance of lattice-based cryptography. For example,
decoding within poly-logarithmic factor from Minkowski’s bound in a
remarkable lattice would lead to a KEM resisting lattice attacks down
to poly-logarithmic approximation factor, provided that the dual lattice
is also close to Minkowski’s bound. Recent works have indeed reached
such decoders for certain lattices (Chor-Rivest, Barnes-Sloan), but these
do not perfectly fit our need as their duals have poor minimal distance.

1 Introduction

At repeated occasions [9,23,36,49,25], and over more than 30 years, it has been
attempted to adapt the public-key encryption scheme of McEliece [26] from codes



to lattices. More specifically, these works attempted to construct particularly
good lattices with efficient decoding algorithms, to use it as a secret-key, and
to give a bad description of a similar lattice as the corresponding public-key.
For example, it was analysed in [12] that the Chor-Rivest cryptosystem [9] was
implicitly relying on a family of lattices for which it is possible to efficiently
decode errors up to a radius within a factor of Oplog nq from optimal (Minkowski
bound). For comparison, the decoding algorithm underlying schemes based on
the Learning with Error problem [42] (LWE) fall short from the Minkowski
bound by polynomial factors; they essentially reduce decoding to the case of the
trivial lattice Zn.

This McEliece-like approach has unfortunately not been very popular lately.
Perhaps it has suffered from the failure of the Merkle-Hellman Knapsack-based
cryptosystem [27,47] more than it should have. Indeed, from the “knapsack-
era”, only the Merkle-Hellman cryptosystem and its variants were completely
devastated by a polynomial-time attack [35]. In contrast, the best known attack
against the scheme of Chor and Rivest [9,25] remains sub-exponential in the
dimension n; what may be concerning is that those attacks are not pure lattice
reduction attacks. For both versions of this scheme, the canonical coordinates
are partially brute-forced during the best attack. Lapiha [21] found that an
Information Set Decoding attack was possible against the variant of Li et al. [25].
Brickell’s attack against the original scheme also relies on guessing over a few
canonical coordinates, inside of an arithmetic attack [9, Sec. VII.5].

However, we note that these attacks are enabled by the fact that these
schemes only re-randomize the lattice by applying a permutation of the co-
ordinates.3 Such permutations are isometries, i.e. lattice isomorphism, but those
are not the only ones. . . The isometry group OnpRq acting on lattices is much
larger than the one acting on codes, and applying a random isometry from this
larger group should convincingly thwart those code-style attacks: the canonical
coordinate system becomes irrelevant.

All these remarks point toward the Lattice Isomorphism Problem (LIP) as a
potential theoretical platform for finally getting this natural approach properly
formalized, and hopefully, truely "lattice-based" in the cryptanalytic sense: the
best known attack should be based on generic lattice reduction algorithms such
as LLL [22] and BKZ [43]. The current state of the art on LIP supports this
hypothesis: all known algorithms [40,41,18,48] rely on finding short vectors. This
is the case even for algorithms specialized to the trivial lattice Zn [50]. However,
experimental studies [7] show that the basis randomization step requires care.

While instantiating LIP with Zn may already give rise to secure cryptosys-
tems, the end goal of this work is to enable lattice-based cryptosystems that

3 This permutation is in fact implicit, hidden in the ordering of the evaluation points
used to define the lattice. Furthermore, both in these lattice schemes and in subse-
quent versions of the McEliece, one may also discard some the evaluation points to
randomize the lattice/code itself beyond isometry. In this article, we will not consider
this extra randomization.
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could be be even more secure than those based on LWE and SIS, by instantiat-
ing the constructed schemes with remarkably decodable lattices.

1.1 Contributions

We propose a formal and convenient framework for LIP-based cryptography,
from which we build an identification scheme based on search-LIP (sLIP), a
(passively secure) Key Encapsulation Mechanism (KEM) based on distinguish-
LIP (∆LIP), as well as signature scheme also based on ∆LIP. In more details:

– We first discuss the LIP problem, recall the quadratic form formalism (Sec-
tion 2.2), and rephrase the LIP problem in terms of quadratic forms to con-
veniently avoid real numbers. Then, thanks to Gaussian Sampling [13,37],
we define an average-case distribution for LIP and establish a worst-case
to average-case reduction within an isomorphism class (Section 3). This ad-
dresses the concerns raised by Blanks and Miller [7], and formalizes their
heuristic countermeasure.

– The above cryptographic foundations are directly inspired by the Zero-
Knowledge proof of lattice non-isomorphism of Haviv and Regev [17]. We
further extend on their techniques by proposing a Zero-Knowledge proof
of knowledge (ZKPoK) of a lattice isomorphism (Section 4). This directly
implies an identification scheme based on sLIP.

– We propose a KEM scheme (Section 5) and a hash-then-sign signature
scheme (Section 6), both based on ∆LIP. Perhaps surprisingly, and unlike
the original scheme of McEliece for codes, we circumvent the additional as-
sumption that decoding a certain class of random lattices would be hard.
This is done via a lossyness argument [39] for the KEM, and a dual argu-
ment for the signature scheme.

– We review the state of the art for solving LIP (Section 7). In particular we
note that all known algorithms go through lattice reduction, and we quantify
the required approximation factor.

– We discuss natural instantiations for each scheme (Section 8) from any re-
markable lattice. This section handles the construction of the auxiliary lattice
appearing in ∆LIP for the lossyness arguments to get through.

1.2 Potential advantages

The KEM. To instantiate our KEM, consider a lattice L (w.l.o.g. of volume 1)
such that:

– the minimal distance is within a factor f from Minkowski’s bound: λ1pLq ě
Ωp
?
n{fq,

– there exists an efficient algorithm that can decode errors in L up to radius
ρ within a factor f 1 from Minkowski’s bound: ρ ě Ωp

?
n{f 1q.4

4 Note that uniqueness of decoding implies f 1 ě 2f .
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– the dual minimal distance is within a factor f˚ from Minkowski’s bound:
λ1pL

˚q ě Ωp
?
n{f˚q.

Then, our instantiated KEM appears to resist lattice attack down to an ap-
proximation factor Opmaxpf, f˚q ¨ f˚ ¨ f 1q. More specifically, it’s security is
based on ∆LIP for two lattices whose primals and duals are all within a fac-
tor Opmaxpf, f˚q ¨ f˚ ¨ f 1q from Minkowski’s bound.

The trivial lattice Zn gives all three factors f, f 1, f˚ of the order Θp
?
nq. The

Barnes-Wall [29] lattice improves all three factors down to Θp 4
?
nq.

The endgame would be to instantiate with lattices for which all three factors
would be very small. In particular, one would naturally turn to recent work on
decoding the Chor-Rivest lattices [9,12,25,21] and the Barnes-Sloane lattices [32]
giving f “ polylogpnq and f 1 “ polylogpnq, but unfortunately their dual are
not that good: f˚ ě Θp

?
nq. Indeed, all these constructions are integer lattices

L Ă Zn with single exponential volume detpLq “ cn: their dual L˚ have a
Minkowski’s bound of Θp

?
n{detpLq1{nq “ Θp

?
nq, but contain all of Zn Ă L˚,

including vectors of norm 1.
Note nevertheless that there is no geometric impossibility to the existence

of the desired remarkably decodable lattice: random lattices have f “ Op1q and
f˚ “ Op1q; so decoding is possible down to f 1 “ Op1q but the best known
algorithm is conjectured to take exponential time.

The signature scheme. The same principle also applies to our signature scheme,
but this time with respect to Gaussian sampling rather than decoding: lattices
with tight sampling (and large dual minimal distance) would lead to a scheme
resisting attacks down to very small approximation factors. Alas, even ignoring
the constraint on the dual lattice, we do not know of any lattice much better
than Zn for efficient gaussian sampling. Yet, instantiated with Zn our scheme
still has an interesting feature: not having to deal with any Gram-Schmidt or
Cholesky matrices over the reals. This may be a worthy practical advantage over
current hash-then-sign signature schemes [13].

The identification scheme. Because sLIP seems super-exponentially hard in the
dimension for well chosen lattices (large kissing number), it might be secure to
instantiate our ZKPoK with a rather small lattice dimension, maybe down to
about a hundred (see the challenge in Table 7.3). Yet, this is more a theoret-
ical curiosity than a practical advantage —the protocol still needs soundness
amplification, and each round requires exchanging Õpn2q bits.

1.3 Open Questions

A KEM with polylog-approximation factor security. Is there any family of lat-
tices that can be efficiently decoded within a polylog factor from Minkowski’s
bound such as [9,12,25,21,32], but whose dual would also have an equally large
minimal distance?

4



Tight Gaussian Sampling for signatures. Is there any family of lattices L (of
volume 1) in which one can efficiently sample Gaussian with small parameter
σ ă op

?
nq, if not σ “ polylogpnq (with exponential smoothing σ ą η2´npLq)?

And if so, do they and their dual have a large minimal distance? Note that
quantumly, this question is related to the previous one via the reduction of
Regev [42]: decoding in the primal for a large radius gives Gaussian sampling in
the dual for a small width. But a classical algorithm would be much preferable.

Concrete instantiation with simple lattices. Instantiated with Zn, our signature
scheme has the advantage of not requiring any Gram-Schmidt or Cholesky de-
composition, contrary to existing hash-then-sign signature schemes; and may
therefore be of practical interest. It could also be reasonable to instantiate our
KEM with the lattice of Barnes and Wall, thanks to the decoder of Micciancio
and Nicolesi [29].

Module-LIP. At last, it also seems natural to explore structured variants of LIP,
where both the lattice and the isometry should be structured. We note that for
any ideal lattice in complex-multiplication number fields, a classical polynomial
time algorithm is known [14,24]. Could the module variant be secure? Can our
constructions gain a linear factor on key sizes from this variant? And are there
remarkably decodable lattices that are also ideals in certain number fields? The
repeated-difference lattices (a.k.a. Craig’s lattices [10]) are indeed ideal lattices in
cyclotomic number field with large minimal distances, but a polynomial decoding
algorithm for them remains to be discovered.
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2 Preliminaries

2.1 Notation

Vectors x are denoted in bold and should be interpreted as column vectors. For a
matrix B with columns b1, . . . , bn we denote its Gram-Schmidt orthogonalisation
by B˚ with columns b˚1 , . . . , b

˚
n, and we denote the matrix norm by ‖B‖ :“

maxi ‖bi‖2. We denote Tq the discretized torus Tq :“ p 1qZq{Z and identify it
with its set of reduced representatives t0, 1q , . . . ,

q´1
q u. The statistical distance

between two random variable X and Y will be denoted ∆pX,Y q.
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2.2 Lattice Isomorphism and Quadratic Forms.

Abstractly, the set of (full-rank, n-dimensional) lattices can be thought as the
homogeneous space5 GLnpRq{GLnpZq: a lattice L “ LpBq :“ B ¨ Zn is generated
by the columns of a basis B P GLnpRq, and two basis B,B1 P GLnpRq generate
the same lattice if and only if there exists a unimodular matrix U P GLnpZq such
that B1 “ BU .

Two lattices are isomorphic if there exists an orthonormal transformation
O P OnpRq sending one to the other. Finding this transformation, if it exists, is
known as the Lattice Isomorphism Problem (LIP).

Definition 2.1 (LIP, lattice version). Given two isomorphic lattices L,L1 Ă
Rn find an orthonormal transformation O P OnpRq such that L1 “ O ¨ L.

Algorithmically lattices L “ LpBq,L1 “ LpB1q are represented by bases B,B1 P
GLnpRq, and if L1 “ O ¨ L, then OB is a basis of L1. If OB “ B1, then we
can easily compute O :“ B1B´1, however in general OB will only be equal to
B1 up to some unimodular transformation. More specifically when L “ LpBq,
and L1 “ LpB1q for some lattice bases B,B1 P GLnpRq the Lattice Isomorphism
Problem asks to find an orthonormal O P OnpRq and a unimodular U P GLnpZq
such that B1 “ OBU . The presence of both the orthonormal and the unimodular
transformation is what makes LIP a hard problem. In other words, reconstructing
(or even testing) equivalence in either quotient GLnpRq{GLnpZq orOnpRqzGLnpRq
is easy, doing so in the double quotient OnpRqzGLnpRq{GLnpZq appears to be
hard.

The real-valued coordinates of the basis and orthonormal transformation
can be inconvenient and inefficient to work with. We can alleviate some of these
concerns by moving to the (equivalent) quadratic form setting, where instead of
a basis B we focus on the Gram matrix Q “ BtB.

Quadratic Forms and Integral Equivalence. The idea of the Quadratic Form
point of view on LIP is to consider the quotient in the opposite order than in
the lattice point of view: first on the left by OnpRq and then only on the right
by GLnpZq.

We define a quadratic form as a positive definite real symmetric matrix.
A quadratic form can be thought as a basis modulo rotation; they realize the
quotient OnpRqzGLnpRq. More precisely, consider the surjective Gram map γ :
GLnpRq Ñ Są0

n pRq sending a lattice basis B to the quadratic form Q “ BtB.
Note that the preimages of γpBq are precisely the OB for O P OnpRq.

For a lattice basis B the Gram matrix Q “ BtB naturally gives a quadratic
form. Additionally every quadratic form Q induces a unique upper-triangular lat-
tice basis BQ such that Q “ BtQBQ (Cholesky decomposition). In the quadratic
form setting lattice vectors Bx P Rn are represented by their integral basis coef-
ficients x P Zn. The inner product with respect to a quadratic form is naturally

5 This quotient should read as the quotient of a set by the action of group, and not a
group quotient. Indeed GLnpZq is not a normal subgroup of GLnpRq for n ą 1.
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given by xx,yyQ :“ xtQy, and the norm by ‖x‖2Q :“ xtQx. Note that this
perfectly coincides with the geometry between the original lattice vectors. We
denote the ball of radius r by BQprq :“ tx P Rn : ‖x‖Q ď ru. Translating the
lattice definition, one get the first minimum λ1pQq defined by

λ1pQq :“ min
xPZnzt0u

‖x‖Q ,

and more generally the i-th minimal distance λipQq defined as the smallest r ą 0
such that tx P Zn | ‖x‖Q ď ru spans a space of dimension at least i.

In this realization Są0
n pRq of the quotient OnpRqzGLnpRq, the action of U P

GLnpZq is given by Q ÞÑ U tQU . We may now rephrase LIP for two lattice bases
B and B1. Note that if B1 “ OBU , then for Q :“ BtB we have:

Q1 :“ pB1qtB1 “ U tBtOtOBU “ U tBtBU “ U tQU,

and we call Q and Q1 equivalent if such a unimodular U P GLnpZq exists, and
denote the equivalence class by rQs, moving the real-valued orthonormal trans-
form O P OnpRq out of the picture. Additionally many remarkable lattices attain
a rational-valued Gram matrix Q, removing the need for real-valued or approx-
imate arithmetic. Later in this work we will restrict ourselves to integer-valued
quadratic forms.

Weaker Equivalence (Genus). The study of integral equivalence of quadratic
forms is classically approached via weaker notions, namely, equivalence over
larger rings [10, Chapter 15, Sec 4]. In particular, we shall consider the ra-
tional equivalence class rQsQ of all U tQU for U P GLnpQq, as well as the p-adic
integer equivalence class rQsZp of all U tQU for U P GLnpZpq. These equiva-
lences are coarser than integral equivalence: rQs “ rQ1s ñ rQsQ “ rQ1sQ and
rQsZp “ rQ

1sZp . These data prQsQ, prQsZpqpq about a quadratic form are called
the genus of the quadratic form.

One could also consider equivalence over the reals R, or over the p-adic ra-
tionals Qp. By a local-global principle (Minkowski-Hasse Theorem [46, Thm. 9,
pp. 44]) these data are redundant with the rational class rQsQ.

The Lattice Isomorphism Problem, Quadratic Form Formulation. The Lattice
Isomorphism Problem can now be restated. We start by properly defining the
worst-case problems, in both a search and distinguishing variant.

Definition 2.2 (wc-sLIPQ). For a quadratic form Q P Są0
n the problem wc-sLIPQ

is, given any quadratic form Q1 P rQs, to find a unimodular U P GLnpZq such
that Q1 “ U tQU .

Note that the problem is equivalent to the original LIP problem as we can still
extract an orthonormal transformation by computing O “ B1pBUq´1. Moreover,
the automorphism group AutpQq :“ tV P GLnpZq : V tQV “ Qu is finite, and
for any solution U P GLnpZq to wc-sLIPQ such that Q1 “ U tQU , the full set of
solutions is given by tV U : V P AutpQqu.
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We also consider a distinguishing variant of LIP, denoted wc-∆LIP. It is not
to be confused with the decisional version of LIP (which we will refer to as
dLIP).6

Definition 2.3 (wc-∆LIPQ0,Q1). For two quadratic forms Q0, Q1 P Są0
n the

problem wc-∆LIPQ0,Q1 is, given any quadratic form Q1 P rQbs where b P t0, 1u
is a uniform random bit, to find b.

Because (part of) the genus is efficiently computable (see Section 7), we will
make sure that rQ0sR “ rQ1sR for all relevant ring extensions R P tQ,R,Qp,Zpu.

Hardness statements. When we discuss the hardness of LIP problems, we will
implicitly assume that we are not talking of a single quadratic form Q (or of
a single pair pQ0, Q1q for ∆LIP), but of a family pQnqn (or a family of pairs
pQ0,n, Q1,nqn for ∆LIP) where n ranges over an infinite set of positive integer.

2.3 Discrete Gaussians and sampling

Discrete Gaussian sampling has been fundamental to the development of lat-
tice based cryptography, by allowing to return short or nearby lattice vectors
without leaking information about the secret key [13]. We rephrase the relevant
definitions and propositions in the quadratic form language.

Distribution. For any quadratic form Q P Są0
n we define the Gaussian function

on Rn with parameter s ą 0 and center c P Rn by

@x P Rn, ρQ,s,cpxq :“ expp´π ‖x´ c‖2Q {s
2q.

The discrete Gaussian distribution is obtained by restricting the continuous
Gaussian distribution to a discrete lattice. In the quadratic form setting the dis-
crete lattice will always be Zn, but with the geometry induced by the quadratic
form. For any quadratic form Q P Są0

n we define the discrete Gaussian distribu-
tion DQ,s,c with center c P Rn and parameter s ą 0 by

Pr
X„DQ,s,c

rX “ xs :“
ρQ,s,cpxq

ρQ,s,cpZnq
if x P Zn, and 0 otherwise.

If the center c is not denoted we have c “ 0. An important property of the dis-
crete gaussian distribution is the smoothing parameter, i.e. how much gaussian
noise s ą 0 is needed to ‘smooth out’ the discrete structure.

Definition 2.4 (Smoothing Parameter). For a quadratic form Q P Są0
n and

ε ą 0 we define the smoothing parameter ηεpQq as the minimal s ą 0 such that
ρQ´1,1{spZnq ď 1` ε.

6 In dLIPQ0 one is given an arbitrary Q1 and must decide whether Q1 belongs to rQ0s.
The distinguishing version is potentially easier in that Q1 is promised to belong to
either rQ0s or rQ1s for some known fixed rQ1s.
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The smoothing parameter is a central quantity for gaussians over lattice, for
example it permits to control the variations of ρQ,s,cpZnq is over all centers c.

Lemma 2.5 ([30]). For any quadratic form Q P Są0
n , ε ą 0, center c P Rn

and parameter s ą ηεpQq we have:

p1´ εq
sn

a

detpQq
ď ρQ,s,cpZnq ď p1` εq

sn
a

detpQq
.

Note that the smoothing parameter ηεpQq is an invariant property of the simi-
larity class rQs, and so we might also denote ηεprQsq for a similarity class. While
computing or even approximating the exact smoothing parameter is hard, we
can obtain sufficient bounds via the dual form.

Lemma 2.6 (Smoothing bound [30]). For any quadratic form Q P Są0
n we

have η2´npQq ď
?
n{λ1pQ

´1q and ηεpQq ď }B˚Q} ¨
a

lnp2np1` 1{εqq{π for ε ą 0.

Above the smoothing parameter the discrete gaussian distribution is in some
sense ‘well behaved’ and we have the following tailbound that one would expect
from a Gaussian distribution.

Lemma 2.7 (Tailbound [31, Lemma 4.4] ). For any quadratic form Q P

Są0
n , ε P p0, 1q, center c P Rn and parameter s ě ηεpQq, we have

Pr
x„DQ,s,c

r‖x´ c‖Q ą s
?
ns ď

1` ε

1´ ε
¨ 2´n.

A constant factor above the smoothing parameter we can furthermore lower
bound the min-entropy of the distribution.

Lemma 2.8 (Min-entropy [38]). For any quadratic form Q P Są0
n , positive

ε ą 0, center c P Rn, parameter s ě 2ηεpQq, and for every x P Zn, we have

Pr
X„DQ,s,c

rX “ xs ď
1` ε

1´ ε
¨ 2´n.

Gaussian Sampling. While the discrete Gaussian distribution already is an im-
portant theoretical tool, for many practical purposes we want to actually sample
(close to) the distribution in an efficient manner. In their breakthrough work
Gentry et al. [13] showed that Klein’s [20] randomized Babai’s nearest plane
algorithm does exactly that. Given a lattice basis one can sample statistically
close to the discrete Gaussian distribution with parameters depending on the
shortness of the (Gram-Schmidt) basis; a better reduced basis allows for a lower
Gaussian width s. To simplify later proofs we use an exact sampling algorithm
by Brakerski et al. [8].

Lemma 2.9 (Discrete Sampling [8, Lemma 2.3]). There is a polynomial-
time algorithm DiscreteSamplepQ, s, cq that given a quadratic form Q P Są0

n ,
center c P Rn, and a parameter s ě }B˚Q} ¨

a

lnp2n` 4q{π, returns a sample
distributed as DQ,s,c.
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2.4 Randomness Extractors

A randomness extractor allows, using a publicly known random seed, to con-
vert a non-uniform randomness source X with high min-entropy H8pXq :“
´ log2pmaxx PrrX “ xsq to a near-uniform random variable [16,4].7

Definition 2.10 (Extractor). An efficient function E : X ˆ t0, 1uz Ñ t0, 1uv

is an pm, εq-extractor, if, for all random variable X distributed over X and
H8pXq ě m, it holds that

∆
`

pZ, EpX,Zqq, pZ, V q
˘

ď ε

where the seed Z Ð Upt0, 1uzq and V Ð Upt0, 1uvq are drawn uniformly at
random, and independently of X.

When instantiating our scheme, we will rely on the existence of an pm, εq-
extractor with parameters m “ Θpvq and ε “ 2´Θpmq.

3 LIP and self-reducibility

In this section we lay the foundation for using the Lattice Isomorphism Problem
in cryptography. We present an average-case distribution for any quadratic form
equivalence class, show how to sample from it, and conclude with a worst-case
to average-case reduction. Note that the worst-case to average-case reduction is
realized within an equivalence class.

3.1 An average-case distribution

First we define our average-case distribution within an equivalence class rQs,
which can be seen as an extension of the techniques used by Haviv and Regev
[18] to show that LIP lies in SZK. While in their work they use a discrete
Gaussian sampler [13] to sample a generating set of the lattice, we extend this
by a linear algebra step that returns a canonically distributed lattice basis —or
in our case a quadratic form.

A posteriori, this algorithm appears very similar to the heuristic approach
of [7], but the use of Gaussian sampling formally guarantees that the output
distribution solely depends on the lattice and not on the specific input basis
—or in our case, depends only on the class of the input quadratic form.

We start with the linear algebra step, that, given a quadratic form and a set
of short vectors of full rank, returns a well-reduced equivalent form.

Lemma 3.1 (Adapted from [28, Lemma 7.1]). There is a polynomial time
algorithm pR,Uq Ð ExtractpQ,Y q that on input a quadratic form Q, and
vectors Y “ py1, . . . ,ymq P Znˆm s.t. rkpLpY qq “ n, outputs a transforma-
tion U P GLnpZq and a quadratic form R “ U tQU equivalent to Q such that
‖B˚R‖ ď maxi ‖yi‖Q.
7 For our application, we do not need to relax the source to only have average min-
entropy, and therefore work with the simpler worst-case version.
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Proof. First let U P GLnpZq be the unique transformation such that T “ U´1Y
is the canonical upper-diagonal Hermite Normal Form of Y . Let R “ U tQU and
note that R is equivalent to Q. Denote the column vectors of U by u1, . . . ,un.
Let p1, . . . , pn be the pivot columns of T . Because T is upper triangular and in
Hermite Normal Form we have ypi “

ři
j“1 Tj,piuj , where Ti,pi ě 1. In particular

we have that spanpypi , . . . ,ypkq “ spanpu1, . . . ,ukq. Let y˚pi and u
˚
i be the i-th

Gram-Schmidt vector of pyp1 , . . . ,ypnq and U respectively w.r.t. Q. Note that
y˚pi “ Ti,pi ¨ u

˚
i , and thus ‖u˚i ‖Q “

∥∥y˚pi∥∥Q {Ti,pi ď ∥∥y˚pi∥∥Q ď ‖ypi‖Q. We
conclude by ‖B˚R‖ “ maxi ‖u˚i ‖Q ď maxi ‖yi‖Q . [\

For our final distribution to be well-defined we need that the extracted quadratic
form only depends on the geometry of the input vectors, and not on the particular
representative Q.

Lemma 3.2. Let Y “ py1, . . . ,ymq P Znˆm have full rank n. Consider the
outputs pR,Uq Ð ExtractpQ,Y q, and pR1, U 1q Ð ExtractpV tQV, V ´1Y q for
some unimodular V P GLnpZq, then R1 “ R, and U 1 “ V ´1 ¨ U .

Proof. From the canonicity of the Hermite Normal Form we immediately obtain
that pU 1q´1V ´1Y “ T “ U´1Y , and thus U 1 “ V ´1 ¨ U . It follows that R1 “
pV ´1 ¨ UqtV tQV pV ´1 ¨ Uq “ U tQU “ R. [\

Now we can define our average-case distribution for a Gaussian parameter s ą 0.

Definition 3.3. Given a quadratic form Q P Są0
n , we define the Gaussian form

distribution DsprQsq over rQs with parameter s ą 0 algorithmically as follows:

1. Let C :“ 1´ p1` e´πq´1 ą 0, and m :“
P

2n
C

T

.
Sample m vectors py1, . . . ,ymq “: Y from DQ,s.
Repeat until their span has full rank n.

2. pR,Uq Ð ExtractpQ,Y q.
3. Return R.

Proof. We have to show that the distribution is well-defined over the equivalence
class rQs, i.e., for any input representative Q1 P rQs the output distribution
should be identical. Let Q1 “ V tQV P rQs. Note that step 1 only depends on the
geometry of the vectors w.r.t. Q1. Therefore if step 1 on input Q finishes with Y ,
then on input Q1 it finishes step 1 with Y 1 “ V ´1Y with the same probability.
By Lemma 3.2 step 2 extracts the same quadratic form R in both cases. So the
distribution is independent of the input representative Q1 P rQs, and thus it is
well-defined over rQs. [\

Given the algorithmic definition of DsprQsq, an efficient sampling algorithm
follows with only a few adaptations. Firstly, we need to efficiently sample from
DQ,s which puts some constraints on the parameter s depending on the re-
ducedness of the representative Q. Secondly, we need to show that step 1 does
not have to be repeated very often. For this we require the additional constraint
s ě λnpQq.

11



Algorithm 1: Sampling from DsprQsq.
Data: A quadratic form Q P Są0

n pZnq, and a parameter
s ě maxtλnpQq, }B

˚
Q} ¨

a

lnp2n` 4q{πu.
Result: Sample R “ U tQU from DsprQsq, with a transformation U P GLnpZq.
C Ð 1´ p1` e´πq´1, mÐ

P

2n
C

T

;
do

Sample y1, . . . ,ym Ð DQ,s ; // Using Lemma 2.9
Y Ð py1, . . . ,ymq;

while rkpY q ă n;
pR,Uq Ð ExtractpQ,Y q;

Lemma 3.4. For any quadratic form Q P Są0
n pZq, and parameter

s ě maxtλnpQq, }B
˚
Q} ¨

a

lnp2n` 4q{πu,

Algorithm 1 runs in expected polynomial time and returns pR,Uq P rQsˆGLnpZq,
where R is a sample from DsprQsq, and U , conditioned on R, is uniform over
the set of isomorphisms from Q to R. In particular R “ U tQU .

Proof. By Lemmas 2.9 and 3.1 every step in Algorithm 1 runs in polynomial
time. What remains is to show that the number of iterations is polynomially
bounded in expectation. Let the random variable T be the number of iterations
before a set of full rank vectors is found, we have to bound ErT s.

If rkpy1, . . . ,yiq ă n, then because s ě λnpQq we have by [18, Lemma 5.1]
that every newly sampled vector yi`1 Ð DQ,s is not in the span of y1, . . . ,yi with
constant probability at least C :“ 1´p1`e´πq´1 ą 0. Letm :“

P

2n
C

T

. The failure
probability pfail of not finding n linearly independent vectors is upper bounded
by a binomial experiment with success probability C, where we reach at most
n´ 1 wins in m trials. By Hoeffding’s inequality we have the tail bound pfail ď

expp´2m ¨ pC ´ n´1
m q2q ď expp´mCq ď expp´2nq ď e´2. The expected number

of iterations ErT s is then bounded by the mean of a geometric distribution with
success probability 1´ pfail, i.e.,

ErT s ď 1{p1´ pfailq ď 1{p1´ e´2q ă 2.

Suppose that the algorithm runs and finishes with a full rank matrix Y , and
returns pR,Uq Ð ExtractpQ,Y q. For any automorphism V P AutpQq, i.e., such
that V tQV “ Q, it would have been just as likely that the final full rank matrix
equalled V Y , because the samples from DQ,s and the stopping condition only
depend on the geometry of the vectors w.r.t. Q. Then, by Lemma 3.2, we have:

ExtractpQ,V Y q “ ExtractppV ´1qtQV ´1, V Y q “ pR, V Uq,

and thus the algorithm would have returned V U with the same probability as U ,
which makes the returned transformation uniform over the set of isomorphisms
tV U : V P AutpQqu from Q to R. [\

12



For (exponentially) large parameters s we can always efficiently sample from the
average-case distribution by first LLL-reducing the representative.

Lemma 3.5. Given any quadratic form Q P Są0
n pZq we can sample from DsprQsq

(together with a transformation) in polynomial time for s ě 2Θpnq ¨ λnprQsq.

Proof. Run the LLL algorithm on Q to obtain a representative Q1 P rQs for
which }B˚Q1} ď 2Θpnq ¨ λnprQsq. Then apply Lemma 3.4 on Q1. For a sample Q2,
combining the unimodular transformations obtained from LLL and the sampling
gives us a unimodular U P GLnpZq such that Q2 “ U tQU . [\

Lemma 3.6. For any quadratic form Q P Są0
n , parameter ε P p0, 1q, and s ě

maxtλnpQq, ηεpQqu, we have

Pr
Q1„DsprQsq

r}B˚Q1} ą s
?
ns ď

1` ε

1´ ε
¨ 100n ¨ 2´n.

Proof. Given full rank vectors Y “ py1, . . . ,ymq P Znˆm the extractor returns a
quadratic form Q1 such that }B˚Q1} ď maxi ‖yi‖Q and thus we can just focus on
the norms ‖yi‖Q of the sampled vectors. Let the random variable T ě 1 be the
number of iterations before a set of full rank vectors is found. From the proof of
Lemma 3.4 we have ErT s ď 2. After t iterations we have sampled t ¨m vectors
x1, . . . ,xt¨m, and by Lemma 2.7 we have ‖xi‖ ą s

?
n with probability at most

p1` εq{p1´ εq ¨ 2´n for each of them. By a union bound we conclude

Pr

„

max
1ďiďT ¨m

‖yi‖Q ą s
?
n



“

8
ÿ

t“1

PrrT “ ts ¨ Prr max
1ďiďt¨m

‖yi‖Q ą s
?
ns

ď

8
ÿ

t“1

PrrT “ ts ¨ t

loooooooomoooooooon

ErT s

¨m ¨
1` ε

1´ ε
¨ 2´n

ď 2 ¨
P

2n
C

T

¨
1` ε

1´ ε
¨ 2´n ď 100n ¨

1` ε

1´ ε
¨ 2´n.

[\
3.2 Average case LIP

The above definition of a distribution over a class which is efficiently sampleable
from any representative of that class leads us to a natural average-case version
of both version of LIP. It is parametrized by a width parameter s ą 0.

Definition 3.7 (ac-sLIPQs ). For a quadratic form Q P Są0
n and s ą 0 the

problem ac-sLIPQs is, given a quadratic form sampled as Q1 Ð DsprQsq, to find
a unimodular U P GLnpZq such that Q1 “ U tQU .

Definition 3.8 (ac-∆LIPQ0,Q1
s ). For two quadratic forms Q0, Q1 P Są0

n and
s ą 0 the problem ac-∆LIPQ0,Q1

s is, given a quadratic form sampled as Q1 Ð
DsprQbsq where b P t0, 1u is a uniform random bit, to find b.

Trivially the average-case variants can be reduced to their respective worst-
case variants. In the following section we show that the reverse is also true.
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3.3 A worst-case to average-case reduction

In general lattice problems become easier when given a short basis; and harder
when given a long basis. Similarly one would expect that ac-sLIPQs and ac-∆LIPQ0,Q1

s

become harder when the parameter s ą 0 increases. In fact when s is large
enough the average-case problem becomes at least as hard as any worst-case
instance; making the average-case and worst-case problems equivalent.

Lemma 3.9 (ac-sLIPQs ě wc-sLIPQ for large s). Given an oracle that solves
ac-sLIPQs for some s ě 2Θpnq ¨ λnpQq in time T0 with probability ε ą 0, we can
solve wc-sLIPQ with probability at least ε in time T “ T0 ` polypn, log sq.

Proof. Given any Q1 P rQs, apply Lemma 3.5 to sample Q2 Ð DsprQsq for
some s ě 2Opnq ¨ λnprQsq, together with a U2 such that Q2 “ U2tQ1U2. Note
that DsprQsq “ DsprQ1sq; we can therefore apply our ac-sLIPQs -oracle to Q2 and
obtain U P GLnpZq such that Q2 “ U tQU . Now for U 1 :“ UU2´1 P GLnpZq we
have:

U 1tQU 1 “ pU2´1qtU tQUU2´1 “ pU2´1qtQ2U2´1 “ Q1.

So given an ac-sLIPQs -oracle we can solve wc-sLIPQ. [\

To allow for more efficient schemes we would like to decrease the parameter s ą 0
in the worst-case to average-case reduction. We can do so at the cost of stronger
lattice reduction than LLL.

Lemma 3.10. Given an oracle that solves ac-sLIPQs for some s ě λnpQq in
time T0 with probability ε ą 0, we can solve wc-sLIPQ with probability at least 1

2
in time

T “
1

ε
pT0 ` polypn, log sqq ` C

˜

n,
s

λnpQq ¨
a

lnp2n` 4q{π

¸

,

where Cpn, fq is the cost of solving the Shortest Independent Vector Problem
(SIVP, [42]) within an approximation factor of f .

Proof. The f -approx-SIVP oracle returns n linearly independent vectors of norm
at most f ¨ λnpQq, and thus using Lemma 3.1 we can construct an equivalent
form Q1 P rQs with }B˚Q1} ď f ¨ λnpQq. For f :“ s{pλnpQq ¨

a

lnp2n` 4q{πq we
obtain that s ě }B˚Q1} ¨

a

lnp2n` 4q{π, and thus we can sample efficiently from
DsprQsq. The rest of the proofs follows similar to that of Lemma 3.9. Additionally
the reduction succeeds with some probability ε ą 0, so we need to repeat it 1

ε
times to obtain a success probability of at least 1

2 . Note that each additional
sample can be computed in polynomial time from the same representative Q1.

[\

Remark 3.11. Note that the overhead is entirely additive, in particular it does
not suffer from the 1

ε amplification. So, while the reduction is not polynomial
time, concretely, one can afford huge overheads; for example an overhead of 2100

would barely affect a underlying hardness of 2128 as 2128 ´ 2100 “ 2127.999....
This situation is quite different from the usual innefficient reductions found in
the literature, where the overhead is multiplicative.
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In Lemma 3.10, the SIVP oracle can be instantiated by a variant of the BKZ
algorithm [43]. With a sub-linear blocksize of β :“ n{ logpnq we could decrease
s to a quasi-polynomial factor expplog2

pnqq ¨λnpQq, with only a sub-exponential
additive cost to the reduction. For security based on exponential hardness (e.g.
T0{ε “ exppΩpnqq) this would still be meaningful, while maintaining a poly-
logarithmic bitlength for the integer entries of the manipulated matrices.

Going down to polynomial factors s “ polypnq ¨ λnpQq (and hence single
logarithmic integer bitlength) would require a linear blocksize β :“ Θpnq, and
an exponential cost 2cn. For small constants c ą 0 such that cn is smaller than the
security parameter the reduction would still be meaningful. However for provable
algorithms this constant c is rather large, and the gap between provable [1] and
heuristic results [5] is significant. As we want to keep our reduction non-heuristic
in this initial work, we will leave this regime for further research.

Using a similar strategy, one can also establish a worst-case to average-case
reduction for ∆LIP. Note that, because it is a distinguishing problem, the ad-
vantage amplification now requires Op1{α2q calls to the average-case oracle.

Lemma 3.12 (ac-∆LIPQ0,Q1
s ě wc-∆LIPQ0,Q1 for large s). Given an oracle

that solves ac-∆LIPQ0,Q1
s for some s ě 2Θpnq ¨maxtλnpQ0q, λnpQ1qu in time T0

with advantage α ą 0, we can solve wc-∆LIPQ0,Q1 with advantage α in time
T ` polypn, log sq.

Lemma 3.13. Given an oracle that solves ac-∆LIPQ0,Q1
s in time T0 for some

s ě maxtλnpQ0q, λnpQ1qu with advantage α ą 0, we can solve wc-∆LIPQ0,Q1

with advantage at least 1
4 in time

T “
1

α2
pT0 ` polypn, log sqq ` C

˜

n,
s

maxtλnpQ0q, λnpQ1qu ¨
a

lnp2n` 4q{π

¸

,

where Cpn, fq is the cost of solving the Shortest Independent Vector Problem
(SIVP, [42]) within an approximation factor of f .

4 Zero Knowledge Proof of Knowledge

At high level, the protocol of Haviv and Regev [18], as well as ours, is very
similar to protocols for other types of isomorphisms, in particular protocols for
graph ismorphism [15] and for code isomorphism [6].

A notable difference however, is that both these protocols [15,6] relied on the
action of a finite group (permutations), allowing to show zero-knowledgness by
uniformity of the distribution over an orbit. In our case, the group acting GLnpZq
is not finite, and not even compact, admitting no such uniform distribution. It
is perhaps surprising to see that uniformity is in fact not required.

4.1 The Σ-protocol

Efficiency and completeness. For efficiency of Σ we have to check that Algo-
rithm 1 runs in polynomial time, and indeed by Lemma 3.4 this is the case

15



Zero Knowledge Proof of Knowledge Σ

Consider two equivalent public quadratic forms Q0, Q1 P Są0
n pZq and a secret unimod-

ular U P GLnpZq such that Q1 “ U tQ0U . Given the public parameter

s ě max
!

λnprQ0sq,max
 

}B˚Q0
}, }B˚Q1

}
(

¨
a

lnp2n` 4q{π
)

,

we define the following protocol Σ that gives a zero-knowledge proof of knowledge of
an isomorphism between Q0 and Q1:

Prover Verifier

Sample Q1 Ð DsprQ0sq by Alg. 1,
together with V s.t. Q1 “ V tQ0V

Q1
ÝÝÝÝÝÝÝÝÝÝÝÑ Sample cÐ Upt0, 1uq

Compute W “ U´c ¨ V
c

ÐÝÝÝÝÝÝÝÝÝÝÝ

W
ÝÝÝÝÝÝÝÝÝÝÝÑ

Check if W P GLnpZq,
and Q1 “W tQcW .

because
s ě max

!

λnprQ0sq, }B
˚
Q0
} ¨

a

lnp2n` 4q{π
)

.

For the verification we have that W P GLnpZq if and only if W is integral and
detpW q “ ˘1, both of which are easy to check in polynomial time.

For the completeness of Σ note that when the prover executes the protocol
honestly we have W :“ U´c ¨V P GLnpZq because U and V are both unimodular
by definition. Additionally we have

Q1 “ V tQ0V “ pV
tpU´cqtq

looooomooooon

W t

ppU cqtQ0U
cq

loooooomoooooon

Qc

pU´cV q
looomooon

W

“W tQcW,

and thus the verifier accepts.

Special Soundness. Suppose we have two accepting conversations pQ1, 0,W0q and
pQ1, 1,W1q of Σ where the first message is identical. The acceptance implies that
W0,W1 P GLnpZq and W t

0Q0W0 “ Q1 “ W t
1Q1W1, and thus U 1 :“ W0W

´1
1 P

GLnpZq gives an isomorphism from Q0 to Q1 as

U 1tQ0U
1 “ pW´1

1 qtpW t
0Q0W0qW

´1
1 “ pW´1

1 qtpW t
1Q1W1qW

´1
1 “ Q1.

We conclude that Σ has the special soundness property.

Special honest-verifier zero-knowledge. We create a simulator that given the
public input Q0, Q1 outputs an accepting conversation with the same probability
distribution as between a honest prover and verifier. Note that the first message
Q1 is always distributed as DsprQ0sq, the challenge c as Upt0, 1uq, and V is
uniform over the set of isomorphisms from Q0 to Q1 by Lemma 3.4. Because U
is an isomorphism fromQ0 toQ1 we have, given the challenge c, thatW “ U´c¨V
is uniform over the set of isomorphisms from Qc to Q1.
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To simulate this we first sample the uniformly random challenge cÐ Upt0, 1uq.
If c “ 0 we can proceed the same as in Σ itself, e.g. sample Q1 Ð DsprQ0sq using
Algorithm 1, together with a V such that Q1 “ V tQ0V , and set W :“ V . The
final conversation pQ1, 0,W q is accepting and follows by construction the same
distribution as during an honest execution conditioned on challenge c “ 0.

If c “ 1 we use the fact that rQ0s “ rQ1s, and that we can use Algorithm
1 with representative Q1 as input instead of Q0. So again we obtain Q1 Ð
DsprQ1sq “ DsprQ0sq following the same distribution, but now together with a
unimodular W P GLnpZq such that Q1 “ W tQ1W . The conversation pQ1, 1,W q
is accepting by construction, and Q1 follows the same distribution DsprQ0sq.
Additionally by Lemma 3.4 the transformation W is indeed uniform over the set
of isomorphisms from Q1 to Q1.

We conclude that Σ has the special honest-verifier zero-knowledge property.

4.2 Identification Scheme

The Zero Knowledge Proof of Knowledge in the previous section is worst-case
in the sense that given any two equivalent forms Q0, Q1 P Są0

n pZq and a secret
isomorphism U P GLnpZq from Q0 to Q1 we can show knowledge of such an iso-
morphism. However to turn this Σ-protocol into an Identification Scheme (see
e.g. [11]) we need to define a distribution of U P GLnpZq (or alternatively of
Q1 w.r.t Q0). Finding an isomorphism between Q0 and Q1 is at most as hard
as solving either ac-sLIPQ0

s or ac-sLIPQ1
s for parameter s as in Σ. Therefore a

natural choice is to have Q1 distributed according to Ds1prQ0sq for some param-
eter s1 ě maxtλnprQ0sq, }B

˚
Q0
} ¨
a

lnp2n` 4q{πu, which we can efficiently sample
from using Algorithm 1. The security of our identification scheme is then solely
based on the hardness of ac-sLIPQ0

s1 .

5 Key Encapsulation Mechanism

In this section we construct a Key Encapsulation Mechanism (KEM) with a secu-
rity proof based on the hardness of ∆LIP. In short we will need a quadratic form
S along with an efficient decoder up to some radius ρ ă λ1pSq{2. The public key
will consist of a long equivalent form P :“ U tSU Ð DsprSsq, while the unimod-
ular transformation U will be the secret key. Knowledge of the transformation U
allows to decode w.r.t. P via S; without any loss in decoding performance. The
key will be a random error e of norm ‖e‖P ď ρ, and it can be encapsulated as
the syndrome e :“ e mod Zn P r0, 1qn. The receiver with knowledge of the secret
transformation U can recover e by decoding via S. The correctness follows from
the fact that the decoding is unique due to ρ ă λ1pSq{2.

For the security we assume that it is (computationally) hard to differentiate
between P Ð DsprSsq and some random sample R Ð DsprQsq from a special
class rQs, a class corresponding to a lattice admitting a dense sublattice. This
assumption allows us to replace P by R, which completely breaks the uniqueness
of the decoding. That is, the syndrome e has many (say expΩpλq) nearby points
w.r.t. R, and retrieving the exact original point becomes statistically hard.
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Key Encapsulation Scheme

Let ρ ă λ1pSq{2 and let S P Są0
n pZq be a quadratic form with an efficient decoder

Decode with decoding radius ρ. Let E : 1
q
Zn ˆ t0, 1uz Ñ t0, 1u` be a p`, neglpnqq-

extractor for some ` “ Θpnq. Given the public parameters

s ě maxtλnpSq, }B
˚
S } ¨

a

lnp2n` 4q{πu, and

q :“

R

s ¨ n

ρ
¨
a

lnp2n` 4q{π

V

,

we define the KEM K :“ pGen,Encaps,Decapsq as follows:

– ppk, skq Ð Genp1nq: on input 1n do:
1. Sample P Ð DsprSsq using Alg. 1, together with U such that P “ U tSU .
2. Output ppk, skq “ pP,Uq.

– pc, kq Ð Encapsppkq: on input 1n and a public key P “ pk do:
1. Sample eÐ 1

q
DP,qρ{?n P 1

q
Zn using Lemma 2.9.

2. Compute cÐ e mod Zn s.t. c P Tnq “ t0, 1
q
, . . . , q´1

q
u
n.

3. Sample a random extractor seed Z Ð t0, 1uz.
4. Compute k Ð Epe, Zq.
5. Output pc, kq where c :“ pc, Zq.

– k Ð Decapspsk, cq: on input c “ pc, Zq and a secret key U :“ sk do:
1. Compute y Ð DecodepS,Ucq s.t. ‖y ´ Uc‖S ď ρ,

output K on failure.
2. Compute k Ð Epc´ U´1y, Zq.
3. Output k.

Efficiency and correctness. We consider the efficiency and correctness of the
KEM K :“ pGen,Encaps,Decapsq instantiated with quadratic form S P

Są0
n pZq and public parameter

s ě maxtλnpSq, }B
˚
S} ¨

a

lnp2n` 4q{πu.

By the above constraint on s, Algorithm 1 will run in polynomial-time by Lemma
3.4. Furthermore by Lemma 3.6 we have with overwhelming probability that

qρ{
?
n ě s

?
n ¨

a

lnp2n` 4q{π ě }B˚P } ¨
a

lnp2n` 4q{π,

and thus we can efficiently sample from DP,qρ{?n by Lemma 2.9.
For correctness note that in the key encapsulation algorithm the sampled

error e has norm at most ‖e‖P ď ρ except with negligible probability by Lemma
2.7, and we denote the encapsulated key by k :“ Epe, Zq, where Z denotes the
randomness extractor’s seed. Because ρ ă λ1pSq{2 the vector x :“ c ´ e P Zn
is the unique closest vector to c with respect to P , which makes Ux the unique
closest vector to Uc with respect to S “ pU´1qtPU´1. In the decapsulation
the decoder computes the unique vector y at distance at most ρ from Uc, which
implies that y “ Ux. So indeed the output k1 :“ Epc´U´1y, Zq “ Epc´x, Zq “
Epe, Zq “ k equals the encapsulated key with overwhelming probability.
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CPA security. To show that our KEM is CPA-secure we fall back to a lossy
trapdoor argument a la [39]. Under the hardness of decisional LIP we can re-
place our unique ρ-decodable quadratic form by one that is far from uniquely
decodable. For the latter it is enough to have a dense sublattice.

Lemma 5.1. Let Q P Są0
n pZq be a quadratic form with a rank r sublattice

DZr Ă Zn. For positive ε ą 0, center c P Rn, parameter s :“ ρ{
?
n ě

2ηεprD
tQDsq, and for every x P Zn we have

Pr
X„DQ,s,c

rX “ xs ď
1` ε

1´ ε
¨ 2´r.

Proof. Let y :“ x ´ c P Rn, and decompose y “: yD ` yDK where yD P

spanpDZrq, and yDK is orthogonal to yD w.r.t Q. Then we have

Pr
X„DQ,s,c

rX “ xs “
ρQ,s,cpxq

ρQ,s,cpZnq
“

ρQ,spyq

ρQ,spy ` Znq
ď

ρQ,spyq

ρQ,spy `DZrq

“
ρQ,spyDKq ¨ ρQ,spyDq

ρQ,spyDKq ¨ ρQ,spyD `DZrq
“

ρQ,spyDq

ρQ,spyD `DZrq
.

Note that we can write yD “ Dz for some z P Rr, then the above equals
PrX„DDtQD,s,z rX “ 0s, which by Lemma 2.8 is bounded by 1`ε

1´ε ¨ 2
´r. [\

Theorem 5.2. We consider the KEM K :“ pGen,Encaps,Decapsq instanti-
ated with quadratic form S P Są0

n pZq, decoding radius ρ, and public key parameter
s ą 0. Let Q P Są0

n pZq be a quadratic form with a dense rank r “ Θpnq sub-
lattice DZr Ă Zn, in particular such that η 1

2
pDtQDq ď ρ{p2

?
nq. Then K is

CPA-secure if ac-∆LIPS,Qs is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We present two
games Game1 and Game2, where Game1 is the regular CPA-security game
with the original scheme, and Game2 is almost identical but with the only
change that the public key is drawn from DsprQsq instead of DsprSsq. By the
hardness of ac-∆LIPS,Qs the two games are computationally indistinguishable,
and due to the dense sublattice we can conclude that winning Game2 with a
non-negligible advantage is statistically impossible.

Let the key-size ` “ Θpnq be such that ` ď r ´ log2p3q. The original KEM
CPA game Game1 is as follows [19]:

– Genp1nq is run to obtain a public key pk “ P . Then Encapsppkq is run to
generate pc, kq with k P t0, 1u`.

– A uniform bit b P t0, 1u is chosen. If b “ 0, set k̂ :“ k, if b “ 1, choose a
uniform k̂ P t0, 1u`.

– Given ppk, c “ pc, Zq, k̂q the adversary A wins the experiment if b is guessed
correctly.

The only difference between Game1 and Game2 is that in Game2 we sample
the public key P from DsprQsq instead of DsprSsq. Note thatGame1 andGame2
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both only use public information and thus by the hardness of ac-∆LIPS,Qs the
two are computationally indistinguishable by A.

Now we take a look at Game2. Consider the output pc “ pc, Zq, kq Ð
Encapsppkq where pk :“ Q1 P rQs. For any fixed c we have by construction that
k :“ Epe, Zq, where e Ð 1

qDQ1,qρ{?n under the condition that e “ c mod Zn.
Equivalently we could say that eÐ c´DQ1,ρ{?n,c, then by Lemma 5.1 we know
that e has a min-entropy of at least r´log2p3q ě l, and thus k :“ Epe, Zq P t0, 1u`
is negligibly close to uniform independent of c. So in Game2 we have that k̂ is
negligibly close to uniform, independent of c and the choice of b P t0, 1u, making
it impossible for A to guess b with non-negligible advantage. [\

6 Signature Scheme

Similar to the Key Encapsulation Mechanism we propose in this section a hash-
then-sign signature scheme based on ∆LIP. The main requirement is a quadratic
form S along with an efficient discrete Gaussian sampling algorithm of smallish
width ρ{

?
n ě η2´ΘpnqpSq.

Again the public key will consist of some lesser reduced form P :“ U tSU Ð
DsprSsq equivalent to S, where the unimodular transformation U will form the
secret key. To sign a message we use a full domain hash to obtain a uniform coset
t ` Zn, the signature then consists of a nearby vector σ Ð DP,ρ{?n,t w.r.t. the
form P . The nearby vector is obtained via S by using the secret transformation
U .

The security assumption is similar, but in some way dual to that of the
KEM. Again assume that it is computationally hard to differentiate between P
and some special class of forms rQs; however in this case Q must admit a sparse
projection (equivalently, their dual should contain a dense lattice). The sparsity
implies that a uniformly random target t does not have a nearby vector with
overwhelming probability, making the signage vacuously hard.

Correctness. For correctness we mainly have to check that the returned signature
σ P Zn is indeed close to t :“ Hpmq w.r.t P . Because P “ U tSU we have:

‖σ ´ t‖P “ ‖Upσ ´ tq‖S “
∥∥σ1 ´ Ut∥∥

S
,

and by Lemma 2.7 we have with overwhelming probability that ‖σ ´ t‖P “

‖σ1 ´ Ut‖S ď ρ{
?
n ¨
?
n “ ρ, concluding the correctness.

Security. For the security proof we first consider a class of quadratic forms for
which the signage is vacuously hard, e.g. for a random target t P Rn{Zn there
exists no nearby vector.

Lemma 6.1. Let Q P Są0
n pZq be a quadratic form with a dense rank k sublattice

DZk Ă Zn, in particular such that ρ{
?
k ď 1{p

?
8πe ¨ detpDtQDq1{2kq. Then for

the dual form Q´1 we have

Pr
t„Upr0,1snq

r|pt` BnQ´1,ρq X Zn| ě 1s ď 2´k.
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Signature Scheme

Let S P Są0
n pZq be a quadratic form together with a sampling algorithm

DiscreteSample that allows to sample statistically close to DP,ρ{?npt`Znq for some
parameter ρ{

?
n ě η2´ΘpnqprSsq and any target t P Tnq . Let H : M Ñ Tnq be a full

domain hash function (modeled as a random oracle). Given the public parameters

s ě maxtλnpSq, }B
˚
S } ¨

a

lnp2n` 4q{πu, and

q :“

R

s ¨ n

ρ
¨
a

lnp2n` 4q{π

V

,

we define the signature scheme S :“ pGen,Sign,Verifyq as follows:

– ppk, skq Ð Genp1nq: on input 1n do:
1. Sample P Ð DsprSsq using Alg. 1, together with U s.t. P “ U tSU .
2. Output ppk, skq “ pP,Uq P Są0

n pZq ˆ GLnpZq.
– σ Ð Signpsk,mq: on input a message m and a secret key U :“ sk do:

1. Compute tÐ Hpmq.
2. Sample σ1 Ð DS,ρ{?n,Ut using DiscreteSample.
3. Compute σ Ð U´1σ1.
4. Output σ P Zn.

– b :“ Verifyppk,m,σq: on input a public key P “ pk, a message m and a signature
σ do:
1. Compute tÐ Hpmq.
2. If σ P Zn, and ‖t´ σ‖P ď ρ, output b “ 1.
3. Otherwise, output b “ 0.

Proof. Let V :“ spanpDq Ă Rn such that the orthogonal projection w.r.t. Q´1

of Zn onto V defines a projected lattice CZk :“ πQ´1,V pZnq of rank k, with
detpCtQ´1Cq ě 1{detpDtQDq. Because a projection is non-increasing in length
we have

Pr
t„UpRn{Znq

r|pt` BnQ´1,ρq X Zn| ě 1s ď Pr
t„UpRk{Zkq

r|pt` BkCtQ´1C,ρq X Zn| ě 1s “ p˚q.

Then using Markov’s inequality we can bound the above by

p˚q ď Et„UpRk{Zkqr|pt` BkCtQ´1C,ρq X Zn|s “
VolCtQ´1CpBkCtQ´1C,ρq

VolCtQ´1CpRk{Zkq

ď
p2πe{kqk{2 ¨ ρk
a

detpCtQ´1Cq
ď 2´k. [\

Theorem 6.2. We consider the signature scheme S :“ pGen,Sign,Verifyq in-
stantiated with quadratic form S P Są0

n pZq, sampling parameter ρ, and public key
parameter s ą 0. Let Q P Są0

n pZq be a quadratic form with a dense rank k “ Θpnq
sublattice DZk Ă Zn, in particular such that 2ρ{

?
k ď p

?
8πe¨detpDtQDtq1{kq´1.

Then S is EUF-CMA secure if ac-∆LIPS,Q
´1

s is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We present three
games Game1,Game2,Game3 where Game1 is the regular EUF-CMA game
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with the original scheme, Game2 reprograms the random oracle to generate
valid signatures without knowledge of the secret key, and Game3 samples the
public key from rQ´1s instead of rSs. By a standard smoothness argument the
adversary’s view of Game1 and Game2 is statistically indistinguishable, and
Game2 and Game3 are indistinguishable by the hardness of ac-∆LIPS,Q

´1

s .
Then we conclude by Lemma 6.1 that the problem of forging a signature in
Game3 is statistically hard.

The original EUF-CMA game Game1 is as follows [19]:

– Genp1nq is run to obtain keys ppk “ P, sk “ Uq.
– Adversary A is given pk “ P and access to an oracle Signpsk, ¨q. The ad-

versary then outputs pm,σq where m was not queried before to the oracle.
– A succeeds if and only if Verifyppk,m,σq “ 1.

To show that our signature scheme S is EUF-CMA secure we have to show that
Game1 succeeds only with negligible probability. We assume that the adversary
queries the oracle on l “ polypnq distinct8 message m1, . . . ,ml. In Game1 the
secret key is used to obtain a valid signature pmi,σiq where σi Ð DP,ρ{?n,Hpmiq.
In Game2 instead we first sample a random error ei Ð 1

q ¨DP,qρ{?n. By Lemma
3.6 we have qρ{

?
n ě }B˚P } ¨

a

lnp2n` 4q{π with overwhelming probability, and
thus by Lemma 2.9 we can do the sampling without using the secret key. Then
we reprogram the random oracle such that Hpmiq :“ ti “ e mod Zn P Tq,
and return the signature pair pmi,σi :“ ti ´ eiq. Note that the probability
that ti equals any target t P Tnq is proportional to ρP,ρ{?n,tpZnq. So ti is close
to uniform by Lemma 2.5 because ρ{

?
n ě η2´ΘpnqprSsq “ η2´ΘpnqprP sq, and

thus the random oracle is still simulated correctly. Additionally the conditional
probability of σi conditioned on ti is exactly the same as in Game1, so we can
conclude that Game1 and Game2 are statistically indistinguishable from the
adversary’s point of view.

The only difference between Game2 and Game3 is that in Game3 we sam-
ple the public key P from DsprQ´1sq instead of DsprSsq. Note that Game2
and Game3 both only use public information and thus by the hardness of
ac-∆LIPS,Q

´1

s the two are computationally indistinguishable.
To conclude note that for any message m we obtain a random target t :“

Hpmq P Tnq . Let e1 be uniform over the Babai nearest plane region defined by P ,
then ‖e1‖P ď

?
n
2 }B

˚
P }, and t

1 :“ t` 1
qe
1 is uniform over Rn{Zn. By Lemma 6.1

the uniformly random target t1 lies at distance at least 2ρ from Zn w.r.t. P with
overwhelming probability. So for t we have with overwhelming probability that:

distP pt,Znq ě distP pt1,Znq ´
∥∥∥∥1

q
e1
∥∥∥∥
P

ě 2ρ´

?
n ¨ }B˚P }

2q

ě 2ρ´ ρ{p2
a

lnp2n` 4q{πq ą ρ.

Therefore it is statistically impossible for the adversary to return a valid signa-
ture for m, and thus to win Game3. [\

8 this can be enforced by salting messages or by derandomization.
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7 Cryptanalysis of LIP

Equivalent quadratic forms Q,Q1 :“ U tQU (for some U P GLnpZq) share many
common properties, and these invariants can be used to decide that two quadratic
forms cannot be equivalent, or can guide the search for an isomorphism.

7.1 Invariants

Arithmetic Invariants. Firstly we have detpUq “ ˘1, and thus for two equivalent
quadratic forms we have detpQ1q “ detpU tqdetpQqdetpUq “ detpQq. Secondly
because U and U´1 are both integral, the quantity gcdpQq “ gcdtQij : 1 ď
i, j ď nu is also an invariant.

A third and less obvious invariant is the parity of the quadratic form. The
notion is standard for unimodular lattices: it is called even if all norms are even,
and odd otherwise. More generally, writing }x}Q “

ř

iQiix
2
i ` 2

ř

iăj xjQijxi
one gets that gcdt}x}Q : x P Znu P t1, 2u ¨ gcdpQq. We call this factor parpQq P
t1, 2u the parity of Q. It is also efficiently computable by noting that parpQq “
gcdptQii : 1 ď i ď nu Y t2 gcdpQquq{ gcdpQq.

Further arithmetic invariants are induced byR-equivalence of quadratic forms
for extensions R Ą Z. The invariants for Q-equivalence can be decomposed via
a local-global principle, namely the Hasse-Minkowski theorem [46, Thm. 9, pp.
44]. Together with the discriminant, these invariants are complete (they entirely
determine quadratic forms up to Q-equivalence), and they can be computed ef-
ficiently. They consists of the signature, and the Cassel-Hasse invariant at each
prime p. The Sylvester signature (R-equivalence) is always pn, 0q in our case
as we are only considering positive quadratic forms. The Cassel-Hasse invariant
(Qp-invariance) for a prime p is given for a diagonal matrix D “ diagpd1, . . . , dnq
by

hp “
ź

iăj

pdi, djqp (1)

where p ¨ , ¨ qp denotes the Hilbert Symbol at p. Using LDLt decomposition
(Cholesky decomposition over the rationals), one can efficiently compute Hasse
invariant for any positive quadratic form.

Similarly, there are also invariants induced by p-adic equivalence of quadratic
forms: Q1 “ V tQV for V P GLnpZpq, see [10, Chap. 15, Sec 4.1].

All these arithmetic invariants provide a fingerprint

aripQq “ pdetpQq, gcdpQq,parpQq, rQsQ, prQsZpqpq (2)

and they appear to all be efficiently computable, but are essentially only useful to
answer the ∆LIP problem in the negative. When instantiating ∆LIP, we should
therefore make sure that these fingerprint matches.

The Hull. In the literature for linear code equivalence a relevant notion is that
of the efficiently computable hull C X CK of a code C Ă Fnq . Properties such
as the rank of the hull are invariant under equivalence, and a small rank even
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allows to efficiently find the isometry [45]. For a lattice L and its dual L˚ we
could define the hull as LXL˚. However, for integral lattices (or more generally
if the associated quadratic form is integral) we always have L Ă L˚ and thus the
hull LXL˚ “ L does not present us with new information. We could generalize
definition to consider LX pk ¨ L˚q for rational k P Q ­“0, and although we do not
see a direct threat for our instantiation (in Section 8) from this, we do encourage
more research into the geometric properties of the resulting lattices.

Geometric Invariant. The defining and most important property of a unimodular
transformation U P GLnpZq is that it gives a bijection Zn Ñ Zn by x ÞÑ Ux (or
x ÞÑ U´1x). With respect to the quadratic forms Q,Q1 :“ U tQU this even gives
an isometry (from Q1 to Q) as

xx,yyQ1 “ x
tQ1y “ xtU tQUy “ xUx, UyyQ for x,y P Rn.

This isometry results in several natural geometric invariants related to the norms
and inner products of integral vectors. We have already seen some, namely the
first minimum λ1pQq and the i-th minimum λipQq. Further geometric invariants
can be defined, such as the kissing number κpQq “ |MinpQq| where

MinpQq :“ tx P Zn : ‖x‖Q “ λ1pQqu,

and more generally the (formal) Theta-series ΘQpqq “
ř

`ě0N`q
` associated to

Q, where N` “ | tx P Zn : }x}Q “ `u |.
All these geometric invariant appears to involve finding or even enumerating

short vectors; in particular they are plausibly hard to compute.

7.2 Algorithms for distinguish-LIP and Hardness Conjecture

In Section 8, we will use ∆LIP with quadratic forms with different minimal
distances λ1pQ0q ă λ1pQ1q. However we will be careful to ensure that their
arithmetic invariant match aripQ0q “ aripQ1q to not make the problem trivial.

Approximate-SVP oracle. An f -approx-SVP oracle applied to a form Q finds a
short vector of length at most f ¨λ1pQq. So ∆LIP is no harder than f -approx-SVP
for f “ λ1pQ1q{λ1pQ0q in any of those lattices.

Unusual-SVP via lattice reduction. However even when the gap between λ1pQ0q

and λ1pQ1q is small, the minimal vectors may individually still be unusually
short, which make them significantly easier to find than in a random lattice.
This is usually formalized via the f -unique-SVP problem, but many instances of
interest do not have such a gap between λ1 and λ2; in fact Zn, Barnes-Wall and
Barnes-Sloane lattices all have λ1 “ λ2 “ ¨ ¨ ¨ “ λn. But practical and heuristic
studies have showed that uniqueness is not that relevant to lattice attacks [2]. We
therefore introduce yet another lattice problem, called unusual-SVP to discuss
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such instances. A formal complexity reduction between unusual-SVP and unique-
SVP matching or approaching the heuristic state of the art appears to be a
valuable research objective, but is beyond the scope of the present article.

We define f -unusual-SVP: find a minimal vector under the promise that
λ1pQq ď ghpQq{f , where the Gaussian Heuristic ghpQq is a heuristic estimate
for λ1pQq given by:

ghpQq :“ detpQq
1{2n

¨
1
?
π
¨ Γ p1` n{2q1{n « detpQq

1{2n
¨

c

n

2πe
.

State of the art lattice reduction techniques find these unusually short vector
more easily than longer vectors with length around ghpQq, and (heuristically)
the hardness is directly driven by the ratio f “ ghpQq{λ1pQq [2]. Given a form
Q1 P rQ0sYrQ1s we parametrize the lattice reduction algorithm to find a unusual
short vector with length mintλ1pQ0q, λ1pQ1qu, then depending on success we
learn that either Q1 P rQ0s or Q1 P rQ1s.

An approach of Szydlo. Additionally there is one heuristic algorithm in the litera-
ture [50] for ∆LIP, that applies to lattices obtained by mild sparsification of the
orthogonal lattice Zn. This algorithm proceeds by sampling vectors of length
Op
?
nq and then decides via a statistical test: the Theta-series appears suffi-

ciently different at such low lengths to distinguish the two lattices. Remarkably,
the parameters for state of the art lattice reduction algorithms parametrized
to solve Op

?
nq-approx-SVP for (mild sparsifications of) Zn, match those to

solve ghpZnq{λ1pZnq “ Op
?
nq-unusual-SVP; instead of finding approximate

vectors we immediately find the shortest vectors. Again we see that the ratio
ghpQq{λ1pQq is what seems to matter.

Conclusion. To conclude, let us also note that any of the above attack can also
be run over the dual. To state a hardness conjecture capturing these attacks we
define the primal-dual gap to the Gaussian Heuristic as:

gappQq “ max

"

ghpQq

λ1pQq
,

ghpQ´1q

λ1pQ´1q

*

.

Note that this quantity might be slightly lower than 1 (but no lower than 1{2
by Minkowski bound): there might exist excellent lattice packings beating the
Gaussian Heuristic. We will be assuming9 gappQiq ě 1, which implies that
λ1pQiq{λ1pQ1´iq ď gappQiq, therefore also capturing the first approach.

In all the attacks above, one first searches for vector no larger than f ¨λ1pQiq
w.r.t. Qi for f “ gappQiq, hence the following conjecture.

9 That is, we cowardly shy away from making hardness conjecture on such exception-
ally dense lattice packings. Such a regime has never been considered in practical
cryptanalysis and would deserve specific attention. We suspect that SVP in such
lattices to be even harder than in random lattices.
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Conjecture 7.1 (Hardness of ∆LIP (Strong)). For any class of quadratic forms
rQ0s, rQ1s of dimension n, with ariprQ0sq “ ariprQ1sq, 1 ď gapprQisq ď f , the
best attack against wc-∆LIPQ0,Q1 requires solving f -approx-SVP in the worst-
case from either rQ0s or rQ1s.

This conjecture is meant to offer a comparison point with existing lattice-
based cryptography in terms of the approximating factor. Beyond contradicting
this assumption, we also invite cryptanalysis effort toward concrete comparison
of f -approx-SVP on those instances to SIS and LWE with the same approxima-
tion factor f .

If one only wishes to argue exponential security in n of the schemes proposed
in this paper, a sufficient conjecture is the following.

Conjecture 7.2 (Hardness of ∆LIP (Mild)). For any class of quadratic forms
rQ0s, rQ1s of dimension n, with ariprQ0sq “ ariprQ1sq, gapprQisq ď polypnq,
wc-∆LIPQ0,Q1 is 2Θpnq-hard.

Note that the conjecture above are "best-case" over the choice of the isomor-
phism class, and worst-case over the representation of the class (however note
that we have a worst-case to average-case reduction over that representation).
That is, even though we may only want to use ∆LIP for specific choices of iso-
morphism classes, we gladly invite cryptanalysis effort on ∆LIP on any choice
of isomorphism classes.

We would also like to motivate any reductionist result in the direction of
those conjectures, though given current knowledge on LIP, this may appear as
an unreasonable expectation. A more reasonable goal might be to generalize the
search-to-decision reduction of Szyldo [50], which is currently limited to solving
sLIP for the trivial lattice Zn given a dLIP oracle for a few special lattices.

7.3 Algorithms for search-LIP and Challenges

While the above invariants allow to semi-decide LIP, the search version requires
more effort; though it also typically proceeds by enumerating short vectors.

A generic approach [48] is as follows: construct MinpQq,MinpQ1q by short
vector enumeration, and from there construct two graphs whose nodes are those
minimal vectors, and with a complete set of edges, labelled by inner products
between those minimal vectors. Then, the isometry U induces a graph isomor-
phism between those two graphs, and can even be reconstructed from the graph
isomorphism (assuming the minimal vectors span Zn, otherwise take all vectors
up to some larger length). Using graph isomorphism algorithms [3] this gives
an algorithm whose time is quasi-polynomial in the kissing number κpQq; this
time may be as large as exppnOp1qq given that κpQq itself may be as large as
exppΘpnqq [51].

The approach of Plesken and Pohst [40], later improved by Plesken and
Souvignier [41], can be seen as a specialized variant of the above where more
(geometric) invariants are considered to improve the search, and possibly without
explicitly constructing the full graph.
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An alternative approach from Haviv and Regev [18] is to somehow randomly
distort both lattices to make the (successive) minimal vectors unique. If by luck,
the distortion applied to both lattices are the same up to the hidden isometry
to recover, then the isometry can be directly recovered by finding the successive
minimal vectors in each lattice. Carefully choosing the randomization, Haviv and
Regev show the desired collision happens after an average nOpnq attempts. This
gives the best known asymptotic complexity in the worst-case.

Concretely, the graph isomorphism approach has been intensively studied
and optimized in small dimensions [48] (say, n ď 10), in particular motivated by
Voronoi’s algorithm for enumerating perfect quadratic forms [44]. One key issue
is the size and shape of the automorphism group of the lattice (and graph) at
hand: too little symmetry and it may become easier to identify matching nodes
by looking at their close neighborhood; too much symmetry, and it may become
easier to make matching assumptions while preserving existence of a solution.

We are unaware of any implementation of the algorithm from [18], or of
any concrete study of the complexity of this approach with or without heuristic
optimizations.

All in all, given the current state of the art, it seems difficult to give a pre-
cise conjecture for the hardness of search-LIP as it may depend on the minimal
distance, the kissing number, and the size and structure of the automorphism
group. Given that all approaches require finding one short vector, we can conjec-
ture exponential hardness for lattices with polynomial gapprQsq, but bearing in
mind that some instances may be much harder, with a complexity up to nOpnq.

Conjecture 7.3 (Hardness of sLIP). For any class of quadratic forms rQs of
dimension n such that gapprQsq ď polypnq, wc-sLIPQ is 2Θpnq-hard.

To motivate further study of the hardness of LIP, we provide a list of challenge
lattices for LIP in Table 7.3, selected from known lattices with large kissing
numbers. More remarkable lattices may be found in the online catalogue of Nebe
and Sloane, in particular the section on Kissing number [33].

For these large kissing number challenges, it might be more enlightening to
separate the search for short vectors and the isomorphism reconstruction. We
therefore invite the cryptanalist to even assume that sampling uniformly a ran-
dom shortest vector comes at unit cost. The search for shortest vectors may also
be harder in practice than for random lattices. Indeed, for these challenges, the
kissing number are significantly larger than the « p4{3qn{2 many short vectors
provided by heuristic sieving algorithms [34], and the minimal length signifi-
cantly exceeds the Gaussian Heuristic.

8 Instantiating ∆LIP pairs from Remarkable Lattices

To instantiate our schemes, we do not only need a lattice with efficient decoding
or sampling; we also need a second lattice with a specific property to instantiate
the ∆LIP problem and argue security. This section deals with how the ∆LIP
pair is constructed from a single remarkable lattice.
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Description Source Dim. Kissing Number
Λ24 The Leech lattice [33,10] 24 196560 « 217.6

MW44 Mordell-Weil lattice by Elkies-Shioda [33] 44 2708112 « 221.4

P48n Extr. Unimod. cyclo-quat. lattice [33] 48 52416000 « 225.6

Ne64 Densest sphere packing known [33] 64 138458880 « 227.0

Γ72 Even unimod. lattice of minimum 8 [33] 72 6218175600 « 232.5

MW128 A Mordell-Weil lattice [33] 128 218044170240 « 237.7

BWn Barnes-Wall lattices [10, Sec 6.5] n “ 2m 2m
2{2`Opmq

Vn Vlăduţ lattices [51] n ě 20.0338n´opnq

Table 1. Some challenge for LIP

8.1 Key Encapsulation Mechanism.

To instantiate our KEM we need two quadratic forms: a form S along with an
efficient decoder that can decode up to some distance ρ ă λ1pQq{2, and a form
Q with a dense rank k sublattice D ¨ Zk Ă Zn such that η 1

2
pDtQDq ď ρ{p2

?
nq.

For simplicity of notation we move to the lattice point of view.
We assume to have an n-dimensional lattice Λ for which gappΛq ď f “

fpnq, and for which we can decode up to ρ “ Θp1{fq ¨ ghpΛq ă λ1pΛq{2. We
consider a general construction leading to a 2n-dimensional primary lattice ΛS
and secondary lattice ΛQ with gap bounded by Opf3q and such that ΛQ has a
dense enough sublattice to instantiate our KEM.

Note that due to the bounded gap of Λ we have by Lemma 2.6 that

η 1
2
pΛq ď η2´npΛq ď

?
n

λ1pΛ˚q
ď

?
n ¨ f

ghpΛ˚q
“ Θpf ¨ detpΛq1{nq.

Now let g “ Θpf2q be a positive integer and consider the lattices:

ΛS :“ g ¨ Λ‘ pg ` 1q ¨ Λ, and ΛQ :“ Λ‘ gpg ` 1qΛ,

where by construction ΛQ has a dense sublattice Λ. Note that we can still decode
ΛS up to radius ρ1 :“ g ¨ ρ “ Θpg{fq ¨ ghpΛq.

Invariants match. Both lattices have determinant gnpg ` 1qn detpΛq2. Due to
the coprimality of g and g ` 1 we still have gcdpΛSq “ gcdpΛQq “ gcdpΛq,
and similarly for the parity. It remains to check rational equivalence and p-adic
equivalence for all primes p. Let R denote a quadratic form representing Λ. Up
to integral equivalence, we have:

S :“

ˆ

g2R 0
0 pg ` 1q2R

˙

Q :“

ˆ

R 0
0 g2pg ` 1q2R

˙

.

Let In be the nˆ n identity matrix and consider the transformations:

U1 :“

ˆ

g´1In 0
0 gIn

˙

U2 :“

ˆ

0 pg ` 1qIn
pg ` 1q´1In 0

˙

.

Then Q “ U t1SU1 over Q: this implies rSsQ “ rQsQ. For any prime p we have
that either gcdpg, pq “ 1 or gcdpg ` 1, pq “ 1 (or both). So either g or pg ` 1q
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is invertible over the p-adic integers Zp, and thus either U1 P GLdpZpq exists
and Q “ U t1SU1 over Zp or U2 P GLdpZpq exists and Q “ U t2SU2 over Zp. In
either case, we have established rSsZp “ rQsZp , which concludes the comparison
of arithmetic invariants: aripSq “ aripQq.

Dense sublattice. We now check the requirements for Theorem 5.2, namely that
η 1

2
pΛq ď ρ1{p2

?
2nq. Given that η 1

2
pΛq ď Θpf ¨ ghpΛq{

?
nq, it is sufficient if

Θpf ¨ ghpΛq{
?
nq ď ρ1{p2

?
2nq “ Θpg{fq ¨ ghpΛq{

?
n,

and thus we can conclude that some g “ Θpf2q indeed suffices.
Following the conclusions from the cryptanalysis in Section 7.2 and more

specifically Conjecture 7.1, we take a look at the primal-dual gap for ΛS and
ΛQ. We have that gappΛSq “ ΘpgappΛqq ď Opfq, and gappΛQq “ Θpg¨gappΛqq ď
Opf3q. Note that following the same computation above but for a primal gap of
f , dual gap of f˚, and a decoding gap of f 1 ě 2f we would have g “ Θpf˚ ¨ f 1q
and obtain a final primal-dual gap of Opmaxpf, f˚q ¨ f˚ ¨ f 1q.

8.2 Signature scheme

Our signature scheme can be instantiated with any lattice for which we can
sample efficiently at small Gaussian widths, following a similar ∆LIP pair as
above.

Namely, we assume to have a lattice Λ with gappΛq ď f and such that
we can sample efficiently with parameter ρ{

?
n “ Θpη2´ΘpnqpΛqq close to the

smoothing bound. Similarly to the KEM we set ΛS :“ g ¨ Λ ‘ pg ` 1q ¨ Λ, and
ΛQ´1 “ Λ ‘ gpg ` 1q ¨ Λ for some integer g ě 1. In particular, as in the KEM,
we do have aripSq “ aripQ´1q.

Then for the dual we have ΛQ “ Λ˚ ‘ 1
gpg`1qΛ

˚, with 1
gpg`1qΛ

˚ as a dense
sublattice. The constraint of Theorem 6.2 boils down to the inequality Θpg ¨
f ¨ detpΛq1{nq ď Θpg2 detpΛq1{nq, and thus some g “ Θpfq suffices. The final
primal-dual gap of ΛS and ΛQ´1 is then bounded by Opf2q.

The simplest lattice for which we have very efficient samplers is of course
the integer lattice Zn, leading to a gap of Opnq via the above construction.
Instantiating our scheme with this lattice would lead to an interesting signature
scheme where there is no need to compute any Cholesky decomposition, even for
signing, and that could be fully implemented with efficient integer arithmetic.

We refer to our last open question (Section 1.3) regarding lattices with a
tighter Gaussian sampler, in order to obtain a signature scheme with a better
underlying approximation factor.

Getting down to Opfq. The general constructions presented turn a good decod-
able or sampleable lattice Λ with gap f into a primary and secondary lattice with
gap Opf3q and Opf2q to instantiate our KEM and signature scheme respectively.
We suggest here that these losses might be an artifact of the security proof.
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Suppose we can generate a random lattice ΛQ such that aripΛQq “ aripΛq;
without the arithmetic constraint we would have with overwhelming probability
that gappΛQq “ Op1q (but even Opfq would suffice). Let’s assume that the
constraint does not affect this gap. Then similar to the scheme of McEliece, by
adding the extra security assumption that it is hard to decode in ΛQ (or hard to
sample for the signature scheme), we could remove the lossyness argument from
the security proof and directly instantiate our schemes with the pair pΛ,ΛQq,
leading to a gap of Opfq.
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