
The randomized slicer for CVPP:
sharper, faster, smaller, batchier

Léo Ducas1, Thijs Laarhoven2, and Wessel P.J. van Woerden1

1 CWI, Amsterdam, The Netherlands
2 TU/e, Eindhoven, The Netherlands

Abstract. Following the recent line of work on solving the closest vector
problem with preprocessing (CVPP) using approximate Voronoi cells, we
improve upon previous results in the following ways:
– We derive sharp asymptotic bounds on the success probability of the

randomized slicer, by modelling the behaviour of the algorithm as
a random walk on the coset of the lattice of the target vector. We
thereby solve the open question left by Doulgerakis–Laarhoven–De
Weger [PQCrypto 2019] and Laarhoven [MathCrypt 2019].

– We obtain better trade-offs for CVPP and its generalisations (strictly,
in certain regimes), both with and without nearest neighbour search-
ing, as a direct result of the above sharp bounds on the success
probabilities.

– We show how to reduce the memory requirement of the slicer, and
in particular the corresponding nearest neighbour data structures,
using ideas similar to those proposed by Becker–Gama–Joux [Cryp-
tology ePrint Archive, 2015]. Using 20.185d+o(d) memory, we can solve
a single CVPP instance in 20.264d+o(d) time.

– We further improve on the per-instance time complexities in cer-
tain memory regimes, when we are given a sufficiently large batch
of CVPP problem instances for the same lattice. Using 20.208d+o(d)

memory, we can heuristically solve CVPP instances in 20.234d+o(d)

amortized time, for batches of size at least 20.058d+o(d).
Our random walk model for analysing arbitrary-step transition proba-
bilities in complex step-wise algorithms may be of independent interest,
both for deriving analytic bounds through convexity arguments, and for
computing optimal paths numerically with a shortest path algorithm.
As a side result we apply the same random walk model to graph-based
nearest neighbour searching, where we improve upon results of Laarhoven
[SOCG 2018] by deriving sharp bounds on the success probability of the
corresponding greedy search procedure.

Keywords: lattices · closest vector problem with preprocessing · ap-
proximate Voronoi cells · iterative slicer · graph-based nearest neighbours

1 Introduction

Lattice problems. Following Shor’s breakthrough work on efficient quantum al-
gorithms for problems previously deemed sufficiently hard to base cryptography

on [26], researchers have began looking for alternatives to “classical” cryptosys-
tems such as RSA [25] and Diffie–Hellman [10]. Out of these candidates for
“post-quantum” cryptography [8], lattice-based cryptography has emerged as a
leading candidate, due to its efficiency, versatility, and the conjecture that the
underlying lattice problems may be hard to solve quantumly as well [23]. The
security of most lattice-based cryptographic schemes can be traced back to ei-
ther the shortest vector problem (SVP) or variants of the closest vector problem
(CVP), which ask to either return the shortest non-zero vector in a lattice, or
the closest lattice vector to a given target vector. These variants include approx-
CVP, where we need to return a somewhat close lattice vector, and bounded
distance decoding (BDD), where we are guaranteed that the target lies close to
the lattice. As parameters for cryptographic schemes are commonly based on the
estimated complexities of state-of-the-art methods for these problems, it is im-
portant to obtain a good understanding of the true hardness of these and other
lattice problems. The current fastest approaches for solving these problems are
based on lattice sieving [1,2,6] and lattice enumeration [3,4,14,15,17], where the
former offers a better asymptotic scaling of the time complexity in terms of the
lattice dimension, at the cost of an exponentially large memory consumption.

The closest vector problem with preprocessing (CVPP). The closest vector prob-
lem with preprocessing (CVPP) is a variant of CVP, where the solver is allowed
to perform some preprocessing on the lattice at no additional cost, before be-
ing given the target vector. Closely related to this is batch-CVP, where many
CVP instances on the same lattice are to be solved; if an efficient global pre-
processing procedure can be performed using only the lattice as input, and that
would help reduce the costs of single CVP instances, then this preprocessing cost
can be amortized over many problem instances to obtain a faster algorithm for
batch-CVP. This problem of batch-CVP most notably appears in the context
of lattice enumeration for solving SVP or CVP, as a fast batch-CVP algorithm
would potentially imply faster SVP and CVP algorithms based on a hybrid of
enumeration and such a CVPP oracle [13,15].

Voronoi cells and the iterative slicer. One method for solving CVPP is the iter-
ative slicer by Sommer–Feder–Shalvi [27]. Preprocessing consists of computing
a large list of lattice vectors, and a query is processed by “reducing” the target
vector t with this list, i.e. repeatedly translating the target by some lattice vector
until the shortest representative t′ in the coset of the target vector is found. The
closest lattice vector to t is then given by t− t′, which lies at distance ‖t′‖ from
t. For this method to provably succeed, the preprocessed list needs to contain all
O(2d) so-called Voronoi relevant vectors of the lattice, which together define the
boundaries of the Voronoi cell of the lattice. This leads to a 4d+o(d) algorithm
by bounding the number of reduction steps by 2d+o(d) [21], which was later im-
proved to an expected time of 2d+o(d) by randomizing the algorithm such that
the number of expected steps is polynomially bounded [9].

2

Approximate Voronoi cells and the randomized slicer. The large number of
Voronoi relevant vectors of a lattice, needed for the iterative slicer to be provably
successful, makes the straightforward application of this method impractical and
does not result in an improvement over the best (heuristic) CVP complexities
without preprocessing. Therefore we fall back on heuristics to analyse lattice-
based algorithms, as they often better represent the practical complexities of
the algorithms than the proven worst-case bounds. For solving CVPP more effi-
ciently than CVP, Laarhoven [18] proposed to use a smaller preprocessed list of
size 2d/2+o(d) containing all lattice vectors up to some radius, while heuristically
retaining a constant success probability of finding the closest vector with the
iterative slicer. Doulgerakis–Laarhoven–De Weger [12] formalized this method
in terms of approximate Voronoi cells, and proposed an improvement based on
rerandomizations; rather than hoping to find the shortest representative in the
coset of the target in one run of the iterative slicer, which would require a prepro-
cessed list of size at least 2d/2+o(d), the algorithm uses a smaller list and runs the
same reduction procedure many times starting with randomly sampled members
from the coset of the target vector. The success probability of this randomized
slicing procedure, which depends on the size of the list, determines how often
it has to be restarted, and thus plays an important role in the eventual time
complexity of the algorithm. Doulgerakis–Laarhoven–De Weger (DLW) only ob-
tained a heuristic lower bound on the success probability of this randomized
slicer, and although Laarhoven [20] later improved upon this lower bound in the
low-memory regime, the question remained open what is the actual asymptotic
success probability of this randomized slicing procedure, and therefore what is
the actual asymptotic time complexity of the current state-of-the-art heuristic
method for solving CVPP.

1.1 Contributions

Success probability asymptotics via random walks. Our main contribu-
tion is solving the central open problem resulting from the approximate Voronoi
cells line of work – finding sharp asymptotics on the success probability of the
randomized slicer. To find these sharp bounds, in Section 3 we show how to
model the flow of the algorithm as a random walk on the coset of the lattice
corresponding to the target vector, and we heuristically characterise transition
probabilities between different states in this infinite graph when using a list of
the αd+o(d) shortest lattice vectors. The aforementioned problem of finding the
success probability of the slicer then translates to: what is the probability in
this graph of starting from a given initial state and ending at any target state
of norm at most γ? From DLW [12] we know that we almost always reach a
state of norm at most some β = f(α) ≥ γ – reaching this state occurs with
probability at least 1/poly(d). However, reaching a state β′ < β occurs only
with exponentially small probability 2−Θ(d). Now, whereas the analysis of DLW
can be interpreted as lower-bounding the success probability by attempting to
reach the target norm in a single step after reaching radius β, we are interested

3

0

t

List L:

α
t′

γ

β

Fig. 1. The iterative slicer as a random walk over the coset t+L using the list of lattice
vectors L = L ∩ B(~0, α).

in the arbitrary-step transition probabilities from β to at most γ, so as to obtain
sharp bounds.

As every path in our graph from β to γ has an exponentially small prob-
ability in d, the total success probability is dominated by that of the highest
probable path for large d; which after an appropriate log-transform boils down
to a shortest path in a graph. Therefore obtaining the success probability of
the randomized slicer is reduced to determining a shortest path in this infinite
graph. We show in Section 4 how we can approximately compute this short-
est path numerically, using a suitably dense discretization of the search space
or using convex optimization. In Section 5 we go a step further by proving an
exact analytic expression of the shortest path, which results in sharp asymp-
totics on the success probability of the randomized slicer for the general case of
approx-CVP.

Heuristic claim 1 (Success probability of the randomized slicer). Given
a list L of the αd+o(d) shortest lattice vectors as input, the success probability of
one iteration of the randomized slicer for γ-CVPP equals:

Pα2,γ2 =

n∏

i=1

(
α2 − (α2 + xi−1 − xi)2

2xi−1

)d/2+o(d)
(1)

with n defined by equation (39) and xi as in Definition 7 depending only on α
and γ.

Running the randomized slicer for O(P−1α2,γ2) iterations, we expect to solve γ-

CVPP with constant probability. Together with a (naive) linear search over the

4

Laa'16

DLW'19

Laa'19

CVPP complexities

without nearest neighbor search

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (= List size)

→
T
im
e
co
m
pl
ex
ity

Fig. 2. Query complexities for solving CVPP without nearest neighbour techniques.
The blue curve refers to [20], the red curve to [12], the green curve to [18], and the
black curve is the result of our refined analysis. The red point indicates the point where
red and black curves merge into one.

preprocessed list, this directly leads to explicit time and space complexities for a
plain version of the randomized slicer for solving CVPP, described in Figure 2.
When using a large list of size at least 20.1437d+o(d) from the preprocessing phase
of CVPP, we derive that one step is optimal, thus obtaining the same asymptotic
complexity as DLW. When using less than 20.1437d+o(d) memory we gradually
see an increase in the optimal number of steps in the shortest path, resulting in
ever-increasing improvements in the resulting asymptotic complexities for CVPP
as compared to DLW.

Using a similar methodology the asymptotic scaling of our exact analysis
when using poly(d) memory matches the 2

1
2d log2 d+o(d log d) time complexity lower

bound of Laarhoven [20]. We do stress that to make this rigorous one should do
a more extensive analysis of the lower order terms.

In Section 7 we further show how to adapt the graph slightly to analyse the
success probability of the iterative slicer for the BDD-variant of CVP, where the
target lies unusually close to the lattice.

Improved complexities with nearest neighbour searching. The main
subroutine of the iterative slicer is to find lattice vectors close to a target in
a large list, also known as the nearest-neighbour search problem (NNS). By
preprocessing the list and storing more data we could find a close vector much

5

Laa'16

DLW'19

Laa'19

CVPP complexities

with nearest neighbor search

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (≥ List size)

→
T
im
e
co
m
pl
ex
ity

Fig. 3. Query complexities for solving CVPP with nearest neighbour techniques, but
without the improved memory management described in Section 6. Similar to Figure 2
the curves meet at a memory complexity of approximately 20.1436d.

faster than the naive way of trying them all. Here we obtain a trade-off between
the size of the NNS data structure and the eventual query complexity.

Heuristic claim 2 (Improved complexities for γ-CVPP). Given a list L
of the αd+o(d) shortest lattice vectors as input and a nearest neighbour parameter
u ∈ (

√
(α2 − 1)/α2,

√
α2/(α2 − 1)), we can solve CVPP in space and time S and

T, where:

S =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
, (2)

T =
1

Pα2,γ2

·
(

α+ u
√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)
. (3)

Figure 3 shows the resulting exact trade-offs for exact CVPP, as well as the
previous lower bounds of [12,20].

Improved memory usage for the NNS data structure. When the number
of NNS queries matches the list size there is a way to do the NNS preprocessing
on the fly; obtaining significantly lower query times while using negligible extra
memory [6,7]. Normally this observation is only helpful for batch-CVPP and not
for a single CVPP instance, however the randomized slicer naturally reduces to
batch-CVPP by considering all target rerandomizations as a batch of targets. In

6

Section 6 we exploit this to obtain better CVPP complexities when using NNS;
improving significantly on the state-of-the-art as shown in Figure 4.

Heuristic claim 3 (Improved memory usage for CVPP with NNS).
Given a list L of the αd+o(d) ≤ 20.185d shortest lattice vectors as input we can
solve a single CVPP instance with the following complexities:

S = αd+o(d), T =
1

Pα2,1
·
(
α ·
√

1− 2 · (1− 1/α2)

1 +
√

1− 1/α2

)−d+o(d)
. (4)

Heuristic claim 4 (Improved memory usage for batch-CVPP). Given
a list L of the αd+o(d) shortest lattice vectors and a batch of at least B CVPP
instances, with

B = max(1, αd · Pα2,1). (5)

Then we can solve this entire batch of CVPP instances with the following amor-
tized complexities per CVPP instance:

S = αd+o(d), T =
1

Pα2,1
·
(
α ·
√

1− 2 · (1− 1/α2)

1 +
√

1− 1/α2

)−d+o(d)
. (6)

In particular, one can heuristically solve a batch of 20.058d+o(d) CVP instances
in time 20.292d+o(d) and space 20.208d+o(d).

Note that this is a stronger result than DLW, which claimed it is possible to solve
2Θ(d) CVP instances in time and space 20.292d+o(d). In contrast, the best complex-
ities for a single instance of CVP are time 20.292d+o(d) and space 20.208d+o(d), thus
the algorithm proposed by DLW significantly increases the memory requirement
for the batch of CVP instances. We show that we can also solve an exponential-
sized batch of CVP instances without significantly increasing either the time or
the memory.

Application to graph-based nearest neighbour searching. Besides deriv-
ing sharp asymptotics for the randomized slicer, the random walk model may
well be of independent interest in the context of analysing asymptotics of other
complex step-wise algorithms, and we illustrate this by applying the same model
to solve a problem appearing in the analysis of graph-based nearest neighbour
searching in [19]: what is the success probability of performing a greedy walk
on the k-nearest neighbour graph, attempting to converge to the actual nearest
neighbour of a random query point? We formalize the transition probabilities in
this context, and show how this leads to improved complexities for lattice sieving
with graph-based nearest neighbour searching for solving SVP.

7

Normal NNS

Memoryless

NNS

Batch-CVPP

Single-CVPP

Minimum batch size

CVPP complexities

with memoryless NNS

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (≥ List size)

→
T
im
e
co
m
pl
ex
ity

Fig. 4. Query complexities for solving CVPP and batch-CVPP with nearest neigh-
bour techniques, and with the improved memory management outlined in Section 6,
making the memory-wise overhead of the nearest neighbour data structure negligible,
either for a single target (below space 20.185d) or for batch-CVPP for sufficiently large
batches (between space 20.185d and 20.5d). The black curve equals the black curve from
Figure 3, the orange curve shows optimized complexities for CVPP using memoryless
NNS whenever possible, and the red curve shows the optimized per-instance complex-
ities for batch-CVPP for sufficiently large batch sizes; if the batch size exceeds the
quantity indicated by the dashed red curve, then the amortized complexity is given by
the solid red curve.

1.2 Working heuristics

While some of our intermediate results are entirely formal, the eventual conclu-
sion on the behaviour of the iterative slicer also relies on heuristics. We restrict
the use of “Theorem”, “Lemma”, and “Corollary” to the formal claims, and refer
to “Heuristic claims” for the rest.

The first heuristic which we use is the commonly used Gaussian heuristic,
which predicts the number of lattice vectors and their density within certain
regions based on the lattice volume. Its use for analysing sieve-type algorithms
is well established [6, 7, 18, 22] and seems consistent with various experiments
conducted in the past.

The second heuristic assumption we use is also central in previous work on the
randomized iterative slicer [12,20], and consists of assuming that the input target
can be randomized, yielding essentially independent experiments each time we
randomize the input over the coset of the target vector. Practical experiments
from DLW [12] seem to support this assumption.

8

The third heuristic is specific to this work, and consists of assuming that in
our graph, the density over all successful paths taken by the slicing procedure
is asymptotically equal to the density given by the most probable successful
path. We suspect that this heuristic assumption can be formalized and justified
following an analysis similar to the concentration bound result of Herold and
Kirshanova [16]. We leave this question open for future work. Note that this
heuristic is only needed to justify the sharpness of our analysis; even without it
our results give lower bounds on the success probability of the iterative slicer.

2 Preliminaries

2.1 Notation

Let us first describe some basic notation. Throughout we will write ‖·‖ for Eu-
clidean norms, and 〈·, ·〉 for the standard dot product. Dimensions of vector
spaces are commonly denoted by d. Vectors are written in boldface notation
(e.g. x). We denote d-dimensional volumes by Vol(·).

2.2 Spherical geometry

We write B = Bd ⊂ Rd for the unit ball, consisting of all vectors with Euclidean
norm at most 1, and we write S = Sd−1 ⊂ Rd for the unit sphere, i.e. the bound-
ary of Bd. More generally we denote by B(x, α) the ball of radius α around x.
Within the unit ball, we denote spherical caps by Cx,α = {v ∈ B : 〈x,v〉 ≥ α} for
x ∈ S and α ∈ (0, 1), and we denote spherical wedges by Wx,α,y,β = Cx,α ∩ Cy,β
where x,y ∈ S and α, β ∈ (0, 1). Note that due to spherical symmetry, the
volume of Cx,α is independent of the choice of x, and the volume of Wx,α,y,β

only depends on the angle between x and y. To obtain the relevant probabil-
ity distributions for the treated algorithms we need the following asymptotic
volumes.

Lemma 1 (Volume spherical cap). Let α ∈ (0, 1) and let x ∈ S. Then the
volume of a spherical cap Cx,α relative to the unit ball B is

C(α) := (1− α2)d/2+o(d). (7)

Lemma 2 (Volume spherical wedge). Let α, β ∈ (0, 1), let x,y ∈ S, and let
γ = 〈x,y〉. Then the volume of the spherical wedge Wx,α,y,β relative to B is

W(α, β, γ) :=





(
1−α2−β2−γ2+2αβγ

1−γ2

)d/2+o(d)
, if 0 < γ < min

(
α
β ,

β
α

)
;

(1− α2)d/2+o(d), if β
α ≤ γ < 1;

(1− β2)d/2+o(d), if α
β ≤ γ < 1.

(8)

9

2.3 Lattices

Given a set of linearly independent vectors B = {b1, . . . ,bd} ⊂ Rd, we define

the lattice generated by the basis B as L = L(B) := {∑d
i=1 λibi : λi ∈ Z}. We

denote the volume det(B) of the parallelepiped B · [0, 1]d by det(L); this volume
is independent of the choice of basis for a lattice. Given a basis of a lattice, the
shortest vector problem (SVP) asks to find a lattice vector of minimum (non-
zero) Euclidean norm in this lattice: if we let λ1(L) = minx∈L\{0} ‖x‖, then
solving SVP corresponds to finding a vector x ∈ L of norm λ1(L).

The analysis of lattice algorithms heavily depends on the Gaussian heuristic,
as it better represents the practical complexity of the algorithms than their
provable counterparts.

Heuristic 1 (The Gaussian heuristic (GH)). Let K ⊂ Rd be a measurable
body, then the number |K ∩ L| of lattice points in K is approximately equal to
Vol(K)/ det(L).

Assuming this heuristic with K a Euclidean d-ball we obtain that λ1(L) has
expected value

√
d/(2πe) · det(L)1/d. For random lattices, which are the main

target in the context of cryptanalysis, the Gaussian heuristic is widely verified
and the following statement can be observed in practice.

Heuristic 2 (Lattice points in a ball, consequence of GH). Let t ∈ Rd
be random. Under the Gaussian heuristic the ball of radius α · λ1(L) contains
αd+o(d) lattice points that we treat as being uniformly distributed over the ball.

As a direct result a random target t ∈ Rd is expected to lie at distance ≈ λ1(L)
from the lattice. This gives the following alternative statements for the common
variants of the closest vector problem (CVP).

Definition 1 (Closest Vector Problem (CVP)). Given a basis B of a lattice
L and a target vector t ∈ Rd, find a vector v ∈ L such that ‖t− v‖ ≤ λ1(L).

The hardness of most lattice-based cryptographic schemes actually depends on
one of the following two easier variants.

Definition 2 (Approximate Closest Vector Problem (γ-CVP)). Given a
basis B of a lattice L, a target vector t ∈ Rd and an approximation factor γ ≥ 1,
find a vector v ∈ L such that ‖t− v‖ ≤ γ · λ1(L).

Definition 3 (Bounded Distance Decoding (δ-BDD)). Given a basis B of
a lattice L, a target vector t ∈ Rd and a distance guarantee δ ∈ (0, 1) such that
minv∈L ‖t− v‖ ≤ δ · λ1(L), find a vector v ∈ L such that ‖t− v‖ ≤ δ · λ1(L).

The preprocessing variants CVPP, γ-CVPP and δ-BDDP additionally allow to
do any kind of preprocessing given only a description of the lattice L (and not
the target t). The size of the final preprocessing advice is counted in the eventual
space complexity of the CVPP algorithm or variants thereof. In the remainder
we assume without loss of generality that λ1(L) = 1.

10

Algorithm 1: The iterative slicer of [27]

Input: A target vector t ∈ Rd, a list L ⊂ L.
Output: A close vector v ∈ L to t.

1 Function IterativeSlicer(L, t):
2 t0 ← t;
3 for i← 0, 1, 2, . . . do
4 ti+1 ← min

v∈L∪{0}
{ti − v};

5 if ti+1 = ti then return t0 − ti ;

2.4 Solving CVPP with the randomized slicer

The (randomized) iterative slicer. The iterative slicer (Algorithm 1) is a simple
but effective algorithm that aims to solve the closest vector problem or variants
thereof. The preprocessing consists of finding and storing a list L ⊂ L of lattice
vectors. Then given a target point t ∈ Rd the iterative slicer tries to reduce the
target t by the list L to some smaller representative t′ ∈ t+L in the same coset
of the lattice. This is repeated until the reduction fails or until the algorithm
succeeds, i.e. when ‖t′‖ ≤ γ. We then obtain the lattice point t− t′ that lies at
distance at most γ to t. Observe that t′ is the shortest vector in t + L if and
only if v = t− t′ ∈ L is the closest lattice vector to t.

To provably guarantee that the closest vector is found we need the prepro-
cessed list L to contain all the Voronoi-relevant vectors; the vectors that define
the Voronoi cell of the lattice. However most lattices have O(2d) relevant vec-
tors, which is too much to be practically viable. Under the Gaussian heuristic,
Laarhoven [18] showed that 2d/2+o(d) short vectors commonly suffice for the it-
erative slicer to succeed with high probability, but this number of vectors is still
too large for any practical algorithm. The randomized slicer (Algorithm 2) of
Doulgerakis–Laarhoven–De Weger [12] attempts to overcome this large list re-
quirement by using a smaller preprocessed list together with rerandomizations to
obtain a reasonable probability of finding a close vector – the success probabil-
ity of one run of the iterative slicer might be small, but repeating the algorithm
many times using randomized inputs from t + L, the algorithm then succeeds
with high probability, without requiring a larger preprocessed list.

Because we can only use a list of limited size, one can ask the question which
lattice vectors to include in this list L. Later in the analysis it will become clear
that short vectors are more useful to reduce a random target, so it is natural to
let L consist of all short vectors up to some radius. Let α > 1 be this radius and
denote its square by a := α2. The preprocessed list then becomes

La := {x ∈ L : ‖x‖2 ≤ a}. (9)

Recall that we normalized to λ1(L) = 1 and thus under the Gaussian heuristic
this list consists of |La| = αd+o(d) lattice points, which determines (ignoring
nearest neighbour data structures) the space complexity of the algorithm and

11

Algorithm 2: The randomized iterative slicer of [12]

Input: A target vector t ∈ Rd, a list L ⊂ L, a target distance γ ∈ R.
Output: A close vector v ∈ L, s.t. ‖t− v‖ ≤ γ.

1 Function RandomizedSlicer(L, t, γ):
2 repeat
3 t′ ← Sample(t + L);
4 v ← IterativeSlicer(L, t′);

5 until ‖t′ − v‖ ≤ γ;
6 return v + (t− t′);

also determines the time complexity of each iteration. Until Section 7 we restrict
our attention to the approximate case γ-CVPP where we have γ ≥ 1, with γ = 1
corresponding to (average-case) exact CVPP. Throughout we will write c := γ2.

Success probability. The iterative slicer is not guaranteed to succeed as the list
does not contain all relevant vectors. However, suppose that the iterative slicer
has a success probability of Pa,c given a random target. It is clear that having
a larger preprocessed list increases the success probability, but in general it is
hard to concretely analyse the success probability for a certain list. Under the
Gaussian heuristic we can actually derive bounds on Pa,c, as was first done by
DLW [12]. They obtained the following two regimes for the success probability
as d→∞:

– For a ≥ 2c− 2
√
c2 − c we have Pa,c → 1.

– For a < 2c− 2
√
c2 − c we have Pa,c = exp(−C · d+ o(d)) for C > 0.

The second case above illustrates that for a small list size the algorithm needs
to be repeated a large number of times with fresh targets to guarantee a high
success probability. This gives us the randomized slicer algorithm. To obtain
a fresh target the idea is to sample randomly a not too large element from the
coset t+L, and assume that the reduction of this new target is independent from
the initial one. Experiments from DLW suggest that this is a valid assumption
to make, and given a success probability Pa,c � 1 it is enough to repeat the
algorithm O(1/Pa,c) times to find the closest lattice point. However this success
probability in the case a < 2c − 2

√
c2 − c is not yet fully understood. Two

heuristic lower bounds [12, 20] are known and are shown in Figure 5. None of
these lower bounds fully dominates the other, which implies that neither of the
bounds is sharp. In the remainder of this work we consider this case where we
have a small success probability.

3 The random walk model

To interpret the iterative slicer algorithm as a random walk we first look at
the probability that a target t is reduced by a random lattice point from the

12

preprocessed list La. By the Gaussian heuristic this lattice point is distributed
uniformly over the ball of radius α. To reduce ‖t‖2 from x to y ∈ [(

√
x− α)2, x]

by some v with ‖v‖2 = a, their inner product must satisfy:

〈t,v〉 < −(a+ x− y)/2.

Using the formulas for the volume of a spherical cap we then deduce the following
probability:

Pv∈α·Bd

(
‖t + v‖2 ≤ y

∣∣∣ ‖t‖2 = x
)

=

(
1− (a+ x− y)2

4ax

)d/2+o(d)
. (10)

Clearly any reduction to y < (
√
x − α)2 is unreachable by a vector in α · Bd.

The probability that the target norm is successfully reduced to some y ≤ ‖t‖2
decreases in α and thus we prefer to have short vectors in our list. As the list
La does not contain just one, but ad/2 lattice vectors we obtain the following
reduction probability for a single iteration of the iterative slicer:

P
(
∃v ∈ La : ‖t + v‖2 ≤ y

∣∣∣ ‖t‖2 = x
)2/d

→ min

{
1, a ·

(
1− (a+ x− y)2

4ax

)}

as d→∞. Note that the reduction probability takes the form exp(−Cd+ o(d))
for some constant C ≥ 0 that only depends on a, x and y. As we are interested
in the limit behaviour as d → ∞ we focus our attention to this base exp(−C),
which we call the base-probability of this reduction and denote it by pa(x, y).
Although these transition probabilities represent a reduction to any square norm
≤ y, they should asymptotically be interpreted as a reduction to ≈ y, as for any
fixed ε > 0 we have that pa(x, y − ε)d/pa(x, y)d = 2−Θ(d) → 0 as d → ∞. If

‖t‖2 = x is large enough we can almost certainly find a lattice point in La that
reduces this norm successfully. In fact a simple computation shows that this is
the case for any x > b := a2/(4a − 4) as d → ∞. So in our analysis we can
assume that our target is already reduced to square norm b, and the interesting
part is how probable the remaining reduction from b to c is.

‖t‖2

0 1 ≤ c y x b

pa(x, y)

Definition 4 (Transition probability). The transition base-probability pa(x, y)

to reduce ‖t‖2 from x ∈ [c, b] to y ∈ [c, x] is given by

pa(x, y) : Sa → (0, 1], (11)

(x, y) 7→
(
a− (a+ x− y)2

4x

)1/2

, (12)

13

with Sa = {(x, y) ∈ [c, b]2 : b ≥ x ≥ y and
√
x−√y < α} the allowed transitions.

Using the above reduction probabilities we model the iterative slicer as a ran-
dom walk over an infinite graph where each node xi ∈ [c, b] is associated with

the squared norm ‖ti‖2 of the partly reduced target. Note that each possible
successful random walk b = x0 → x1 → · · · → xn = c has a certain success prob-
ability. Assuming the different steps are independent this success probability is
just the product of the individual reduction probabilities. For an n-step path we
could split our list La in n parts, one for each step, to obtain this independence
without changing the asymptotic size of these lists. Again this success probabil-
ity is of the form exp(−Cd + o(d)) for some constant C ≥ 0 that only depends
on x0, . . . , xn and a.

Definition 5 (Path). All decreasing n-step paths x0 → x1 → · · · → xn with
positive probability from b to c are given by the set:

Sa[b
n→ c] := {(b = x0, x1, . . . , xn = c) ∈ Rn+1 : ∀i (xi−1, xi) ∈ Sa}. (13)

The transition base-probability of such a path is given by

Pa[b
n→ c] : Sa[b

n→ c]→ (0, 1], (14)

x 7→
n∏

i=1

pa(xi−1, xi). (15)

The success probability of reaching c from b is determined by the total probability
of all successful paths. Note that all these paths have some probability of the
form exp(−Cd + o(d)) and thus the probability for the path with the smallest
C ≥ 0 will dominate all other paths for large d. As a result, almost all successful
walks will go via the highest probable path, i.e. the one with the highest base-
probability. After applying a log-transform this becomes equivalent to finding
the shortest path in a weighted graph.

Definition 6 (Transition graph). Let V = [c, b] and E = [c, b]2 be an infinite
graph G = (V,E) with weight function w : E → R≥0 ∪ {∞} given by:

w(x, y) =

{
− log pa(x, y), if (x, y) ∈ Sa;

∞, otherwise.
(16)

One can associate n-step paths in this graph from b to c with the space Sa[b
n→ c].

The length of a path x ∈ Sa[b
n→ c] is denoted by `a[b

n→ c](x) and the shortest
path length by

`a,opt[b→ c] = inf
n∈Z≥1

inf
x∈Sa[b

n→c]
`a[b

n→ c](x). (17)

Obtaining the success probability in this model therefore becomes equivalent to
obtaining the length of the shortest path `a,opt[b→ c] as we have Pa[b

n→ c](x) =

exp(−`a[b
n→ c](x)).

14

Algorithm 3: A discretized shortest path algorithm [11]

Input: Parameters a, b, c describing the graph, a discretization value k.
Output: A shortest path on the discretized graph from b to c.

1 Function DiscretizedDijkstra(a, b, c, k):

2 Compute Vd = {c+ i·(b−c)
k

: i = 0, . . . , k};
3 Compute Ed = {(x, y) ∈ V 2

d ∩ Sa} and the weights wa(x, y);
4 Compute shortest path on Gd = (Vd, Ed) from b to c.

4 Numerical approximations

We reduced the problem of obtaining the success probability of the iterative slicer
to the search of a shortest path in a specially constructed weighted infinite graph.
We might not always be able to find an exact solution in the input variables to
the length of the shortest path. However for fixed parameters we can always
try to numerically approximate the success probability, by approximating the
shortest path in our infinite graph. We present two fairly standard methods for
doing so. The first method first discretizes the infinite graph and then determines
the shortest path using standard algorithms such as Dijkstra’s algorithm [11].
The second method uses the fact that the weight function wa : Sa → R≥0 is
convex.

4.1 Discretization

A natural way to approximate the shortest path in an infinite graph is to first
discretize to a finite subgraph. Then one can determine the shortest path in this
subgraph using standard methods to obtain a short path in the infinite graph.
The details of this approach are shown in Algorithm 3.

Using any optimized Dijkstra implementation the time and space complexity
of Algorithm 3 is O(|Ed|+ |Vd| log |Vd|) = O(k2). In general this method gives a
lower bound on the success probability for any fixed a and c. Because the weight
function wa : Sa → R≥0 is continuous Algorithm 3 converges to the optimal
path length as k → ∞. The C++ implementation of this method used for the
experiments is attached in the complementary material of this work.

For this method to converge to the shortest path in the full graph we only
need a continuous weight function. Furthermore the number of steps does not
have to be specified a priori. The high memory usage of O(k2) could limit the
fineness of our discretization. To circumvent this we can generate the edges (and
their weight) on the fly when needed, which reduces the memory consumption
to O(k).

4.2 Convex optimization

Where the first method only needed wa : Sa → R≥0 to be continuous, the second
method makes use of the convexity of this function.

15

Lemma 3 (Convexity of Sa and wa). The set of allowed transitions Sa is
convex and the weight function wa is strictly convex on Sa.

Proof. The convexity of Sa = {(x, y) ∈ [c, b]2 : b ≥ x ≥ y and
√
x − √y < α}

follows immediately from the fact that x 7→ √x is concave on [0,∞). Remember
that for (x, y) ∈ Sa

wa(x, y) = − log pa(x, y) = −1

2
log

(
a− (a+ x− y)2

4x

)
, (18)

and thus we have

d2

dx2
wa(x, y) =

8xpa(x, y)2 + (4a− 2(a+ x− y))2 − 16pa(x, y)4

32x2pa(x, y)4
, (19)

d

dy

d

dx
wa(x, y) =

−8xpa(x, y)2 + (4a− 2(a+ x− y)) · 2(a+ x− y)

32x2pa(x, y)4
, (20)

d2

dy2
wa(x, y) =

8xpa(x, y)2 + 4(a+ x− y)2

32x2pa(x, y)4
. (21)

As pa(x, y) > 0 and a+ x− y ≥ a > 0 for (x, y) ∈ Sa we have d2

dy2wa(x, y) > 0.
We consider the Hessian H of wa. Computing the determinant gives:

det(H) =
2(a+ x− y)4 · (4ax− (a+ x− y)2)

1024x6pa(x, y)8
(22)

and we can conclude that det(H) > 0 from the fact that 4ax− (a+ x− y)2 > 0
and (a+ x− y)4 > 0 for (x, y) ∈ Sa. So H is positive definite, which makes wa
strictly convex on Sa. ut

Corollary 1 (Convexity of Sa[b
n→ c] and `a[b

n→ c]). The space of n-step

paths Sa[b
n→ c] is convex and the length function `a[b

n→ c] is strictly convex on

Sa[b
n→ c] for any n ≥ 1.

Proof. The convexity of Sa[b
n→ c] follows immediately from that of Sa. Note

that `a[b
n→ c](x) =

∑n
i=1 wa(xi−1, xi) and thus it is convex as a sum of convex

functions. Furthermore for each variable at least one of these functions is strictly
convex and thus the sum is strictly convex. ut

So for any fixed n ≥ 1 we can use convex optimization to numerically determine
the optimal path of n steps. In fact, because of the strict convexity, we know
that this optimal path of n steps (if it exists) is unique. However the question
remains what the optimal number of steps is, i.e. for which n we should run the
convex optimization algorithm. We might miss the optimal path if we do not
guess the optimal number of steps correctly. Luckily because wa(b, b) = 0 by
definition, we can increase n without being afraid to skip some optimal path.

16

Lemma 4 (Longer paths are not worse). If `a[b
n→ c] and `a[b

n+k→ c] for
n, k ≥ 0 both attain a minimum, then

min
x∈Sa[b

n→c]
`a[b

n→ c](x) ≥ min
x∈Sa[b

n+k→ c]

`a[b
n+k→ c](x). (23)

Proof. Suppose `a[b
n→ c] attains its minimum at y = (b = y0, y1, . . . , yn = c) ∈

Sa[b
n→ c]. Using that wa(b, b) = 0 we get that:

min
x∈Sa[b

n+k→ c]

`a[b
n+k→ c](x) ≤ `a[b

n+k→ c](b, . . . , b = y0, . . . , yn = c) (24)

= k · wa(b, b) + `a[b
n→ c](y) (25)

= `a[b
n→ c](y). (26)

This completes the proof. ut
So increasing n can only improve the optimal result. When running a numerical
convex optimization algorithm one could start with a somewhat small n and
increase it (e.g. double it) until the result does not improve any more.

4.3 Numerical results

We ran both numerical algorithms and got similar results. Running the convex
optimization algorithm gave better results for small a = 1 + ε as the fineness
of the discretization is not enough to represent the almost shortest paths in
this regime. This is easily explained as b ≈ 1

4ε and thus for fixed c the distance
between b and c, i.e. the interval to be covered by the discretization quickly
grows as ε→ 0.

The new lower bound that we obtained numerically for exact CVPP (c = 1)
is shown in Figure 5. For α ≤ 1.1047 we observe that the new lower bound is
strictly better than the two previous lower bounds. For α > 1.1047 the new
lower bound is identical to the lower bound from [12]. Taking a closer look at
the short paths we obtained numerically we see that α ≈ 1.1047 is exactly the
moment where this path switches from a single step to at least 2 steps. This
makes sense as in our model the lower bound from [12] can be interpreted as a
’single step’ analysis. This also explains the asymptote for this lower bound as
for α ≤ 1.0340 it is not possible to walk from b to c = 1 in a single step.

When inspecting these short paths b = x0 → x1 → · · · → xn = c further we
observed an almost perfect fit with a quadratic formula xi = u · i2 + v · i+ b for
some constants u, v. In the next section we show how we use this to obtain an
exact analytic solution for the shortest path.

5 An exact solution for the randomized slicer

In order to determine an exact solution of the shortest path, and thus an exact
solution of the success probability of the iterative slicer we use some observations

17

Prop. 1

Laa'16

DLW'19

Laa'19

Success probability bounds

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d

20d

2-0.2d

2-0.4d

2-0.6d

2-0.8d

2-1.0d

2-1.2d

→ List size

→
S
uc
ce
ss
pr
ob
ab
ili
ty

Fig. 5. Lower bounds on success probability of the iterative slicer for CVPP (c = 1)
computed with a discretization parameter of k = 5000.

from the numerical results. Due to Corollary 1 we know that for any fixed n ≥ 1
our minimization problem is strictly convex. As a result there can be at most
one local minimum which, if it exists, is immediately also the unique global
minimum.

In order to find an exact solution we explicitly construct the shortest n-
step path using observations from the numerical section. Then showing that
this path is a local minimum is enough to prove that it is optimal. We recall
from Section 4.3 that the optimal path x0 → · · · → xn seems to take the shape
xi = u · i2 + v · i+ b with xn = c. So for our construction we assume this shape,
which reduces the problem to determining the constants u, v. Furthermore, as we
are trying to construct a local minimum, we assume that all partial derivatives
in the non-constant variables are equal to 0. This gives enough restrictions to
obtain an explicit solution.

Definition 7 (Explicit construction). Let n ≥ 1 and let

xi = ua[b
n→ c] · i2 + va[b

n→ c] · i+ b, (27)

with ua[b
1→ c] := 0, va[b

1→ c] := c− b and for n ≥ 2:

ua[b
n→ c] :=

(b+ c− a)n−
√

(an2 − (b+ c))2 + 4bc(n2 − 1)

n3 − n , (28)

va[b
n→ c] :=

(a− 2b)n2 + (b− c) +
√

(an2 − (b+ c))2 + 4bc(n2 − 1)n

n3 − n . (29)

18

10 steps

24 steps

(optimal)

30 steps

Optimal paths for

1-CVPP (a=1.02)

0 5 10 15 20 25 30
0
c

5

10

b

15

→ Steps

→
S
qu
ar
ed
no
rm

Fig. 6. Some examples of the constructed paths in Definition 7 for a = 1.02, c = 1.

Lemma 5. By construction we have xn = c and

∂

∂xi

n∑

j=1

− log pa(xj−1, xj) = 0 (30)

for all i ∈ {1, . . . , n− 1}.
Proof. Note that the partial derivative constraints can be reduced to the single
constraint ∂

∂xi
(− log pa(xi−1, xi)− log pa(xi, xi+1)) = 0 for a symbolic i. To-

gether with the constraint xn = c one can solve for u, v in xi = u · i2 + v · i+ b.
For a symbolic verification see the Sage script in Appendix A. ut

What remains is to show that the explicit construction indeed gives a valid
path, i.e. one that is in the domain Sa[b

n→ c]. An example of how these con-
structed paths look are given in Figure 6. We observe that if n becomes too large
these constructed paths are invalid as they walk outside the interval [c, b]. This
is an artefact of our simplification that wa(x, y) = − log pa(x, y) which does not
hold for (x, y) 6∈ Sa. We can still ask the question for which n this construction
is actually valid.

Lemma 6 (Valid constructions). Let b−c
a ≤ n < 1

2 +

√
(4b−a)2−8(2b−a)c

2 a and

xi = ua[b
n→ c] · i2 + va[b

n→ c] · i+ b. (31)

Then x = (x0, . . . , xn) ∈ Sa[b
n→ c] and x is the unique minimum of `a[b

n→ c].

19

Proof. We have to check that x satisfies the two conditions

xi−1 ≥ xi and
√
xi−1 −

√
xi < α, (32)

for all i ∈ {1, . . . , n}. Note that for n = 0 we must have b = c and the statement
becomes trivial. For n = 1 we have x = (b, c) and the conditions follows from

0 ≤ b− c ≤ na ≤ a. So we can assume that n ≥ 2. First we rewrite ua[b
n→ c] to:

ua[b
n→ c] =

(b+ c− a)n−
√

((b+ c− a)n)2 + (a2n2 − (b− c)2)(n2 − 1)

n3 − n , (33)

which makes it clear that ua[b
n→ c] ≤ 0 when an ≥ b − c. As a result the

differences

xi−1 − xi = (1− 2i) · ua[b
n→ c]− va[b

n→ c], (34)

are increasing in i ∈ {1, . . . , n}. Therefore for the first condition it is enough to
check that

x0 − x1 =
(b− c) + (2b− a)n−

√
(an2 − (b+ c))2 + 4bc(n2 − 1)

n2 + n
≥ 0. (35)

In fact a solution with x0 = x1 = b is not so interesting, so solving for x0−x1 > 0
gives for n ≥ 2 the sufficient condition

n <
1

2
+

√
(4b− a)2 − 8(2b− a)c

2 a
. (36)

For the second condition we first show the stronger property that xi−1−xi ≤ a,
and again by the increasing differences it is enough to show that xn−1−xn ≤ a;
rewriting gives the following sufficient statement for n ≥ 2:

−an+ b− c ≤ 0. (37)

Now we prove that
√
xi−1 −

√
xi < α. If xi−1 = xi the condition holds trivially,

else xi−1 > xi and we get

(
√
xi−1 −

√
xi)

2 < (
√
xi−1 −

√
xi)(
√
xi−1 +

√
xi) = xi−1 − xi ≤ a. (38)

We conclude that x ∈ Sa[b
n→ c]. As `a[b

n→ c](x) =
∑n
i=1− log pa(xi−1, xi) on

Sa[b
n→ c], the claim that this is a global minimum follows from Definition 7 and

Lemma 1. ut

So by Lemma 7 there exists some s ∈ N such that for all (b − c)/a ≤ n ≤ s
we have an explicit construction for the optimal n-step path. By Lemma 4 we
know that of these paths the one with n = s steps must be the shortest. However
for n > s our construction did not work and thus we do not know if any shorter
path exists. Inspired by Lemma 4 and numerical results we obtain the following
alternative exact solution for n > s.

20

Theorem 1 (Optimal arbitrary-step paths). Let n satisfy

n =

⌈
−1

2
+

1

2a

√
(4b− a)2 − 8(2b− a)c

⌉
. (39)

For k ≥ n the unique global minimum of `a[b
k→ c] is given by

x = (b, . . . , b, b = y0, . . . , yn = c) ∈ Sa[b
k→ c] (40)

with yi = ua[b
n→ c] · i2 + va[b

n→ c] · i+ b and the length is equal to `a[b
n→ c](y).

Proof. By Corollary 1 it is enough to show that x is a local minimum, therefore

we check the partial derivatives. For i > k − n we have ∂
∂xi

`a[b
k→ c](x) =

∂
∂xi

`a[b
n→ c](y) = 0 by construction. For i < k−n we have xi−1 = xi = xi+1 = b,

which results in ∂
∂xi

`a[b
k→ c](x) = −a−12b < 0. For the most interesting case

i = k − n we need that n ≥ − 1
2 +

√
(4b−a)2−8(2b−a)c

2 a . Because as a result we get

y0 − y1 ≤ a2

2b−a , which together with y0 − y1 ≤ b− c ≤ b− 1 is precisely enough

to show that ∂
∂xk−n

`a[b
k→ c](x) ≤ 0.

To conclude let z 6= x ∈ Sa[b
n→ c], then by Corollary 1 and using that

zi − xi = zi − b ≤ 0 for all 0 ≤ i ≤ k − n we have:

`a[b
k→ c](z) > `a[b

k→ c](x) + 〈y − x,∇`a[b
k→ c](x)〉 (41)

= `a[b
k→ c](x) +

∑

i≤k−n

(zi − xi) ·
∂

∂xi
`a[b

k→ c](x) ≥ `a[b
k→ c](x).

(42)

and thus x is the unique global minimum of `a[b
k→ c]. ut

Corollary 2 (Optimal minimum-step paths). The optimal path from b to
c consists of n steps, with n defined by equation (39). The optimal path is of the

form b = x0 → x1 → · · · → xn = c with xi = ua[b
n→ c] · i2 + va[b

n→ c] · i+ b.

Heuristic claim 5. Given the optimal path b = x0 → · · · → xn = c from
Corollary 2, the success probability of the iterative slice algorithm for γ-CVPP
is given by

exp

(
n∑

i=1

wa(xi−1, xi)d+ o(d)

)
. (43)

As we have an exact formula for the optimal number of steps, and the lower
bound from DLW [12] uses a ‘single-step’ analysis we know exactly in which
regime Corollary 2 improves on theirs. Namely for those a > 1 and c ≥ 1
such that for n defined by equation (39) we have n > 1. For exact CVPP we

21

CVPP = 1-CVPP2-CVPP5-CVPP

Optimal number of steps

for (approximate) CVPP

20d 20.1d 20.1436d 20.2d 20.3d
1

2

4

8

16

32

→ List size

→
N
um
be
r
of
st
ep
s

Fig. 7. Optimal number of steps n against the list size |L| = αd+o(d) = ad/2+o(d). We
improve upon DLW whenever n > 1. For large list sizes the optimal number of steps of
cost exp(−Cd+ o(d)) drops to 0, as then the success probability of the iterative slicer
equals 2−o(d).

obtain improvements for a < 1.22033. This improvement can also be visualized
through Figure 7, which plots the optimal number of steps against the size of
the preprocessed list. Whenever the optimal strategy involves taking more than
one step, we improve upon DLW. For the crossover points where the number
of optimal steps changes we have a more succinct formula for the shortest path
and the success probability.

Lemma 7 (Success probability for integral n). If n defined similar to equa-
tion (39), but without rounding up, is integral, then the optimal path from b to
c has probability

((
a

2− a

)n
·
(

1− 2n(a− 1)

2− a

))d/2+o(d)
. (44)

Proof. For such n we obtain the expression xi = b− (i+ 1) · i · a2−a2−a . The result
follows from simplifying the remaining expression. ut

Using this special case we can easily analyse the success probability in the low-
memory regime.

Corollary 3 (Low-memory asymptotics). For a fixed ε > 0 and a = 1 + ε,
the success probability of the optimal path from b to c equals (2eε+o(ε))d/2+o(d).

22

The above improves upon the lower bound of (4ε + o(ε))d/2+o(d) of Laarhoven
[20]. Using a similar methodology to [20], to obtain a polynomial space complex-
ity ad/2+o(d) = dΘ(1) we set ε = Θ(1

d log d), resulting in a success probability of

e−
1
2d ln d+o(d ln d).
We nevertheless stress that drawing conclusions on the iterative slicer ef-

ficiency for ε = o(1) is far from rigorous: first the analysis assumes a space
complexity of ad/2+o(d) for a constant a > 1; second, the optimal path now
requires an non-constant number of steps, and the o(d) terms in the exponent
may accumulate to linear or super-linear terms. To make this more rigorous one
would require do a more extensive analysis of the lower order terms.

6 Memoryless nearest neighbour searching

Nearest neighbour searching techniques. The main subroutine of the iterative
slicer is to find lattice vectors close to a target t in a large list L, also known
as the nearest neighbour search problem (NNS). By preprocessing the list and
storing them in certain query-friendly data structures, we can find a close vector
much faster than through the naive way of going through all vectors in the list.
Generally we obtain a trade-off between the size of the NNS data structure (and
the time to generate and populate this data structure) and the eventual query
complexity of finding a nearest neighbour given a target vector.

A well known technique for finding near neighbours is locality-sensitive hash-
ing (LSH). The idea is that a hash function partitions the space into buckets,
such that two vectors that are near neighbours are more likely to fall in the same
bucket than a general pair of vectors. Preprocessing then consists of indexing
the list L in these buckets, for each of several hash functions. Using a hash table
we then perform a quick lookup of all list vectors that lie in the same bucket as
our query vector, to find candidate near neighbours. A query t is then answered
by searching for a close vector in these buckets, one for each hash function, that
corresponds to t. Given the correct parameters this leads to a query time of
|L|ρ+o(1) for some ρ < 1. More hash functions giving finer partitions can reduce
the query time at the cost of extra storage for the required number of hash
tables.

Locality-sensitive filters (LSF) were later proposed as a generalization of
LSH, where the space is not necessarily partitioned into buckets, but where
regions can overlap – some vectors may end up in multiple buckets for one hash
function, and some may end up in none of them. Currently the best nearest
neighbour complexities for large lists are achieved by using spherical locality-
sensitive filters [6].

Nearest neighbour search in batches. The drawback of NNS data structures is
that it can increase the memory usage significantly. As for the iterative slicer
this memory could also be used for a larger list L, and thus giving a higher
success probability, the current optimal time-memory trade-offs only spend a
small amount of memory on the NNS data structure.

23

However as already introduced in [7] and later applied in [18], [12] and [6],
we can reduce the query time significantly without any extra memory in case
we process multiple queries at the same time. Suppose we have |L| targets, then
to process all these queries we need as many hash computations as one would
need for the precomputation of the list. As a result we could just process each
hash function one by one on our list L and our list of targets. We immediately
process the list and target vectors that fall in the same bucket. In the end this
is equivalent to first preprocessing the list L and then running all queries one by
one, however without using more than Õ(|L|) memory. So we can achieve low
amortized query times for large batches, without using any extra memory.

Lemma 8 (Batch NNS [6]). Given a list of size |L| = αd+o(d) uniformly
distributed over Sd−1 and a batch of targets of size |B| ≥ |L|, with target dot
product 〈v, t〉 ≥

√
1− 1/a. Then we can solve the nearest neighbour problem

with an amortized cost per target of

T =

(
a− 2 · (a− 1)

1 +
√

1− 1/a

)−d/2
(45)

using only αd+o(d) space.

Batches from rerandomization. Note that for the randomized slicer we naturally
obtain a batch of rerandomized targets of size |B| = O(1/Pa,c). In the case that
the number of rerandomized targets is larger than the list size |L| we could gen-
erate and process these targets in batches of |L| at a time, therefore making use
of optimal NNS parameters without any extra memory. This idea significantly
improves the time-memory trade-off compared to the current state-of-the-art as
shown in Figure 4. Also note that in the higher memory regimes where we do not
have enough rerandomized targets to do this, we still lower the necessary batch
sizes for this technique to work by a factor one over the success probability.

Heuristic claim 6 (Improved memory usage for batch-CVPP with NNS).
Suppose we have a list of size |L| = αd+o(d), and suppose we are given a batch
of at least B γ-CVPP instances, with

B = max(1, αd+o(d) · Pa,c) (46)

Then we can heuristically solve this entire batch of γ-CVPP instances with the
following amortized complexities per CVPP instance:

S = αd+o(d), T =
1

Pa,c
·
(
a− 2 · (a− 1)

1 +
√

1− 1/a

)−d/2+o(d)
. (47)

7 Bounded distance decoding with preprocessing

We consider the success probability of the iterative slicer for bounded distance
decoding. Instead of assuming that our target lies at distance λ1(L) of the lattice

24

we get the guarantee that our target lies at distance δ · λ1(L) of the lattice. To
incorporate this into our model we start with the same graph G = (V,E) with
V = [1, b] and weight function wa from Definition 6. However we add a single
extra node V ′ = V ∪{δ2} to the graph that represents our goal, i.e. the reduced
target t′ with norm δ.

We have to determine the base-probability of transitioning from a target t of
squared norm x to our goal t′ of norm at most δ using a lattice vector v ∈ La.
Because the reduction vector v = t− t′ can assumed to be uniformly distributed
over B(t, δ) we obtain the following base-probability of the reduction:

Pv∈B(t,δ)(v ∈ La)2/d →





1, if x ≤ a− δ2,
−x2+2x(δ2+a)−(a−δ2)2

4xδ2 , if a− δ2 < x < (α+ δ)2,

0, otherwise.

as d→∞.
Given the base-probability that we can transition from a target t to our

goal t′ we extend the weight function on the edges (x, δ2) in the natural way.
As before we can now run the numerical approximation algorithm from Section
4.1 to obtain a lower bound on the success probability. The results are shown
in Figure 8 and improve on those from [12] in the low-memory regime. We do
not see any restrictions for doing an exact analysis for BDDP similar to that of
Section 5, but it is out of the scope of this paper. Also we expect these numerical
results to be sharp, just as shown in the approximate CVPP case.

In Figure 9 we show the resulting δ-BDDP time-memory trade-off with
memory-intensive NNS, similar to Figure 3. The memoryless NNS technique
from Section 6 could also directly be applied for (batch-)BDDP, to obtain even
better amortized complexities. We also note from Figure 9 that, our bound for
the time complexity δ-BDDP is always smaller than δ′-BDDP for δ < δ′, as
one would naturally expect. This resolves another mystery left by the analysis
of [12], for which this wasn’t the case.

We observe that the BDD guarantee does not improve the success proba-
bilities that much, certainly not in the low-memory regime. The iterative slicer
algorithm does not seem to fully exploit the BDD guarantee. An explanation for
this in the low-memory regime is that only the ’last’ step can improve by the
BDD guarantee. For all other steps, of which there are many in the low-memory
regime, the BDD guarantee does not improve the transition probabilities. There-
fore we cannot expect that the algorithm performs significantly better in the
low-memory regime with that BDD guarantee than without. An open problem
would be to adapt the iterative slicer to make better use of this guarantee.

8 Application to graph-based NNS

Besides nearest-neighbour search data structures based on locality-sensitive hash-
ing or filters, as seen in Section 6, there also exists a graph based variant. Al-
though graph based nearest-neighbour data structures have proven to be very

25

0-BDDP

1-BDDP ≈ CVPP

Success probabilities

for {0, 15 ,
2
5 ,
3
5 ,
4
5 ,1}-BDDP

20d 20.1d 20.2d 20.3d 20.4d 20.5d

20d

2-0.1d

2-0.2d

2-0.3d

2-0.4d

2-0.5d

→ List size

→
S
uc
ce
ss
pr
ob
ab
ili
ty

Fig. 8. Success probability of the iterative slicer for δ-BDDP with δ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}, computed with a discretization parameter of k = 5000.

1-BDDP ≈ CVPP

0-BDDP (old)

0-BDDP (new)

BDDP complexities

with nearest neighbor search

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (≥ List size)

→
T
im
e
co
m
pl
ex
ity

Fig. 9. Time complexities for δ-BDDP with memory-intensive nearest neighbour
searching.

efficient in practice [5], the theoretical analysis has only been considered very
recently [19, 24]. Preprocessing consists out of constructing a nearest-neighbour

26

graph of the list L and the query phase consists out of a greedy walk on this
graph that hopefully ends at the closest vector to the given target.

Definition 8 (α-near neighbour graph). Let L ⊂ Sd−1 and α ∈ (0, 1), we
define the α-near neighbour graph G = (V,E) with V = L and (x,y) ∈ E if and
only if 〈x, y〉 ≥ α.

Given a target t, the query phase starts at some random node x ∈ L of the
α-near neighbour graph. Then it tries to find a neighbour y of x in the graph
that lies closer to t. This is repeated until such a closer neighbour does not exist
any more or if a close enough neighbour is found. Note that for α ≈ 0 this is
equivalent to a brute-force algorithm with time O(N), however for larger α the
number of neighbours can be much lower than N , possibly resulting in lower
query times.

Just as for the iterative slicer there is no guarantee that the nearest neighbour
of t is found. This success probability decreases as the graph becomes sparser,
and just as for the iterative slicer we achieve a good probability of answering the
query successfully by repeating the algorithm. The rerandomization in this case
is achieved by starting the greedy walk at a different node of the graph.

In the context of lattice problems we are mainly interested in NNS in the
setting that |L| = (4/3)d/2, and thus we will focus on that, but our model is
certainly not limited by this. In this setting the points in our list are uniformly
distributed over the sphere. Laarhoven [19] was the first to formalize the success
probability and this resulted in a lower bound using similar techniques as those
used for DLW [12]. We show that this lower bound on the success probability is
not sharp for all parameters α and our analysis gives the real asymptotic success
probability, again using the random walk model.

In this case the distance measure is taken as the cosine of the angle 〈v, t〉
between the vector and the target. Note that in this setting the goal is to find
a v ∈ L such that 〈v, t〉 ≥ 1

2 by greedily walking over the graph, decreasing this
angle in each step if possible. Again given α we have some β ≤ 1

2 such that with
high probability we end up at the some v ∈ L with 〈v, t〉 ≈ β. So just as in Section
3 the success probability is determined by the highest probable path from β to
1
2 . The transition probability from x to y is equal to (4/3)d/2 · W(α, y, x) [19].

Heuristic claim 7 (Success probability of graph-NNS). Let L ⊂ Sd−1
be a uniformly distributed list of size (4/3)d+o(d). Let α ∈ (0, 12) and β =

max
(

1
2 ,
√

(1− 4α2)/(5− 8α)
)

. Let G = (V,E) be an infinite graph with V =

[β, 12] and weight function

wα,nns(x, y) = min

(
0,−1

2
log

(
4

3
− 4

3
· α

2 + y2 − 2αxy

1− x2
))

. (48)

Let x0 → · · · → xn be the shortest path in G from β to 1
2 , then success probability

of a single greedy walk in the α-near neighbour graph of L is given by

exp

(
−

n∑

i=1

wα,nns(xi−1, xi)d+ o(d)

)
. (49)

27

HashSieve
SphereSieve

LDSieve

GraphSieve (old)

GraphSieve (new) Tim
e =
Sp
ace

20.20d 20.25d 20.30d 20.35d 20.40d
20.25d

20.30d

20.35d

20.40d

20.45d

→ Space complexity

→
T
im
e
co
m
pl
ex
ity

Fig. 10. Asymptotic exponents for heuristic lattice sieving methods for solving SVP
in dimension d, using near neighbour techniques.

We do not see major problems in finding an exact solution for the shortest
path, but this is out of the scope of this paper. The results from a numerical
approximation using the techniques from Section 4 are shown in Figure 10.

Acknowledgments

The authors thank Elena Kirshanova for pointing out an imprecision in the
statement of Lemma 8. Leo Ducas was supported by the European Union H2020
Research and Innovation Program Grant 780701 (PROMETHEUS) and the Veni
Innovational Research Grant from NWO under project number 639.021.645.
Thijs Laarhoven was supported by a Veni Innovational Research Grant from
NWO under project number 016.Veni.192.005. Wessel van Woerden was sup-
ported by the ERC Advanced Grant 740972 (ALGSTRONGCRYPTO).

References

1. Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In STOC, pages 601–610, 2001.

2. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in
lattice reduction. In EUROCRYPT, pages 717–746, 2019.

3. Yoshinori Aono and Phong Q. Nguyên. Random sampling revisited: lattice enu-
meration with discrete pruning. In EUROCRYPT, pages 65–102, 2017.

28

4. Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration
and tweaking discrete pruning. In ASIACRYPT, pages 405–434, 2018.

5. Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms. Information
Systems, 2019.

6. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In SODA, pages
10–24, 2016.

7. Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving with-
out increasing the memory, using sub-quadratic nearest neighbor search. IACR
Cryptology ePrint Archive, 2015:522, 2015.

8. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-
quantum cryptography. Springer, 2009.

9. Daniel Dadush and Nicolas Bonifas. Short paths on the voronoi graph and closest
vector problem with preprocessing. In Proceedings of the twenty-sixth annual ACM-
SIAM symposium on Discrete algorithms, pages 295–314. Society for Industrial and
Applied Mathematics, 2015.

10. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

11. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

12. Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Finding closest
lattice vectors using approximate Voronoi cells. In PQCrypto, 2019.

13. Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. A lattice
enumeration–sieving hybrid for SVP based on batch-CVP. Draft, 2019.

14. Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of
short length in a lattice. Mathematics of Computation, 44(170):463–471, 1985.

15. Nicolas Gama, Phong Q. Nguyên, and Oded Regev. Lattice enumeration using
extreme pruning. In EUROCRYPT, pages 257–278, 2010.

16. Gottfried Herold and Elena Kirshanova. Improved algorithms for the approximate
k-list problem in Euclidean norm. In PKC, pages 16–40, 2017.

17. Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In STOC, pages 193–206, 1983.

18. Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing). In SAC,
pages 523–542, 2016.

19. Thijs Laarhoven. Graph-based time-space trade-offs for approximate near neigh-
bors. In SOCG, 2018.

20. Thijs Laarhoven. Approximate Voronoi cells for lattices, revisited. In MathCrypt,
2019.

21. Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential
time algorithm for most lattice problems based on voronoi cell computations. SIAM
Journal on Computing, 42(3):1364–1391, 2013.

22. Phong Q Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

23. Chris Peikert. A decade of lattice cryptography. Monograph, 2016.
24. Liudmila Prokhorenkova. Graph-based nearest neighbor search: From practice to

theory. arXiv:1907.00845 [cs.DS], 2019.
25. Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

29

26. Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In FOCS, pages 124–134, 1994.

27. Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest lattice point by
iterative slicing. SIAM Journal on Discrete Mathematics, 23(2):715–731, 2009.

A Sage code for symbolic verification

Sage code for the symbolic verification of the statements in this paper.

30

[1]: var('k','a', 'b', 'c', 'd', 'u', 'v', 'm', 'n', 'x', 'y', 'z')
p(x,y) = a - (a+x-y)^2/(4*x)
logp(x,y) = -log(p(x,y))/2

A.1 Lemma (Strict convexity)

We check that the given partial derivatives in the Lemma are correct.

[2]: d2x2 = (8*x*p(x,y) + (4*a-2*(a+x-y))^2 - 16*p(x,y)^2)/(2*(4*x*p(x,y))^2)
dydx = (-8*x*p(x,y)+(4*a-2*(a+x-y))*2*(a+x-y))/(2*(4*x*p(x,y))^2)
d2y2 = (8*x*p(x,y) + 4*(a+x-y)^2)/(2*(4*x*p(x,y))^2)
detH = (2*(a+x-y)^4*(4*a*x-(a+x-y)^2))/(1024*x^6*p(x,y)^4)
print'd2x2 logp correct: ', (d2x2-logp.derivative(x).derivative(x)).is_zero()
print 'd2y2 logp correct: ', (d2y2-logp.derivative(y).derivative(y)).is_zero()
print 'dydx logp correct: ', (dydx-logp.derivative(x).derivative(y)).is_zero()
print 'detH logp correct: ', (detH-d2x2*d2y2+dydx^2).is_zero()

d2x2 logp correct: True
d2y2 logp correct: True
dydx logp correct: True
detH logp correct: True

A.2 Definition (Explicit Constructions)

We check that the explicit construction indeed satisfies the mentioned properties.

[3]: xx(k) = u*k^2 + v*k + b
ly(x,y,z) = (logp(x,y) + logp(y,z))
dlydy(x,y,z) = ly(x,y,z).derivative(y)
sols = solve([dlydy(x=xx(k-1), y=xx(k), z=xx(k+1)) == 0, xx(m) == c], u,v)[0]
uu = ((b+c-a)*m - sqrt((a*m^2-(b+c))^2+4*b*c*(m^2-1)))/(m^3-m)
vv = ((a-2*b)*m^2+(b-c)+sqrt((a*m^2-(b+c))^2+4*b*c*(m^2-1))*m)/(m^3-m)
print 'u correct: ', (sols[0].right()-uu).is_zero()
print 'v correct: ', (sols[1].right()-vv).is_zero()
print 'xx(m)==c: ', (xx(m)(u=uu,v=vv)-c).is_zero()
print 'd/dy (logp(x,y)+logp(y,z)) (x=xx(k-1),y=xx(k),z=xx(k+1))(u=uu,v=vv)==0:
↪→ ', dlydy(x=xx(k-1),y=xx(k),z=xx(k+1))(u=uu,v=vv).is_zero()

31

u correct: True
v correct: True
xx(m)==c: True
d/dy (logp(x,y)+logp(y,z)) (x=xx(k-1),y=xx(k),z=xx(k+1))(u=uu,v=vv)==0: True

A.3 Lemma (Valid Construction)

We check that the explicit construction is valid for

b− c
a
≤ n <

1
2
+

√
(4b− a)2 − 8(2b− a)c

2 a

We first need to verify that x0 − x1 > 0. We do this by rewriting the problem to that of showing
that a degree 3 polynomial in n with positive leading coefficient is negative. Our n is between the
second and third root and thus we can conclude.

[4]: uu_rewritten = ((b+c-a)*m-sqrt(((b+c-a)*m)^2+(a^2*m^2-(b-c)^2)*(m^2-1)))/
↪→(m^3-m)
C = (b-c)+(2*b-a)*m
D = (a*m^2-(b+c))^2+4*b*c*(m^2-1)
print 'We define C = ', C(m=n), ', and D = ', D(m=n)
x0subx1 = ((b-c)+(2*b-a)*m - sqrt((a*m^2-(b+c))^2+4*b*c*(m^2-1)))/(m^2+m)
print 'u == u_rewritten', (uu-uu_rewritten).is_zero()
print 'x_0 - x_1 == (C-sqrt(D))/(n^2+n)', (xx(0)-xx(1)-(C-sqrt(D))/
↪→(m^2+m))(u=uu,v=vv).is_zero()
DC = ((D-C^2)/m).simplify_full()
print 'x_0 - x_1 > 0 is equivalent to (D-C^2)/n < 0', '(D-C^2)/n=', DC(m=n)
E = sqrt((4*b-a)^2-8*(2*b-a)*c)/(2*a)
print 'Let E=', E
print '(D-C^2)/n has zeros n=1/2-E, n=-1, n=1/2+E', (DC(m=1/2-E).is_zero(),
↪→DC(m=-1).is_zero(), DC(m=1/2+E).is_zero())

print 'Because 1/2+E > n >= 2 we have n >= 2 > 1/2-E, so n is between the
↪→second and third root of (D-C^2)/n'

print 'We conclude that x_0 - x_1 > 0 for all 2 <= n < 1/2+E'

We define C = -(a - 2*b)*n + b - c , and D = 4*(nˆ2 - 1)*b*c + (a*nˆ2 - b -
c)ˆ2
u == u_rewritten True
x_0 - x_1 == (C-sqrt(D))/(nˆ2+n) True
x_0 - x_1 > 0 is equivalent to (D-Cˆ2)/n < 0 (D-Cˆ2)/n= aˆ2*nˆ3 + 2*a*b - 4*bˆ2
- 2*(a - 2*b)*c - (aˆ2 - 2*a*b + 4*bˆ2 + 2*(a - 2*b)*c)*n
Let E= 1/2*sqrt((a - 4*b)ˆ2 + 8*(a - 2*b)*c)/a
(D-Cˆ2)/n has zeros n=1/2-E, n=-1, n=1/2+E (True, True, True)
Because 1/2+E > n >= 2 we have n >= 2 > 1/2-E, so n is between the second and
third root of (D-Cˆ2)/n
We conclude that x_0 - x_1 > 0 for all 2 <= n < 1/2+E

Next we check that xn − 1 − xn <= a for n >= max(2, (b − c)/a), again by rewriting the
equations.

32

[5]: xmsub = ((a - 2*c)*m + b - c + sqrt(a^2*m^4 - 2*(a*b + (a - 2*b)*c)*m^2 +
↪→b^2 - 2*b*c + c^2))/(m^2 + m)

eq = (xmsub <= a)
eq2 = (eq * (m^2+m) - ((a-2*c)*m+b-c))
print 'x_n-1 - x_n <= a is for n > 1 equivalent to', eq2.left().
↪→simplify_full()(m=n), '<=', eq2.right().simplify_full()(m=n)

print 'Using that n<=(b-c)/a and b+c >= 2 >= a the right hand side is
↪→non-negative, so we can square both sides. Further rewriting gives us'

eq3 = ((eq2)^2 - ((m^2 + m)*a - (a - 2*c)*m - b + c)^2)/(m*(m+1)*4*c)
print 'the equivalent statement', eq3.left().simplify_full()(m=n), '<=', eq3.
↪→right(), 'and we can conclude.'

x_n-1 - x_n <= a is for n > 1 equivalent to sqrt(aˆ2*nˆ4 - 2*(a*b + (a -
2*b)*c)*nˆ2 + bˆ2 - 2*b*c + cˆ2) <= a*nˆ2 + 2*c*n - b + c
Using that n<=(b-c)/a and b+c >= 2 >= a the right hand side is non-negative, so
we can square both sides. Further rewriting gives us
the equivalent statement -a*n + b - c <= 0 and we can conclude.

A.4 Theorem (Optimal arbitrary-length paths)

The case i < k− n is easily verified

[6]: print 'd/dy (logp(x,y)+logp(y,z))(x=b,y=b,z=b) == -(a-1)/
↪→(2*b)',(dlydy(x=b,y=b,z=b) - (-(a-1)/(2*b)))(b=a^2/(4*a-4)).is_zero()

d/dy (logp(x,y)+logp(y,z))(x=b,y=b,z=b) == -(a-1)/(2*b) True

For the case i = k-n we first show that y0 − y1 <= a2/(2b− a).

[7]: Y=m^2+m
X=a^2/(2*b-a)
print 'We define X = ', X, ', and Y = ', Y
print 'y_0-y_1 = (C-sqrt(D))/Y <= X is equivalent to (C-XY)^2 <= D'
df = ((C-X*Y)^2-D).simplify_full()
print '(C-XY)^2-D =', df
print '(C-XY)^2-D is of degree 4 and has roots -1/2-E, -1,0, -1/2+E', df(m=-1/
↪→2-E).is_zero(), df(m=-1).is_zero(), df(m=0).is_zero(), df(m=-1/2+E).
↪→is_zero()
print 'If n>=2 and n>=-1/2+E, than n is larger than all roots, so
↪→(C-XY)^2-D<=0 because the leading coeff is negative and we can conclude.'

We define X = -aˆ2/(a - 2*b) , and Y = mˆ2 + m
y_0-y_1 = (C-sqrt(D))/Y <= X is equivalent to (C-XY)ˆ2 <= D
(C-XY)ˆ2-D = 4*((aˆ3*b - aˆ2*bˆ2)*mˆ4 + 2*(aˆ3*b - aˆ2*bˆ2)*mˆ3 + (aˆ3*b +
aˆ2*bˆ2 - 6*a*bˆ3 + 4*bˆ4 - 2*(aˆ2*b - 3*a*bˆ2 + 2*bˆ3)*c)*mˆ2 + 2*(aˆ2*bˆ2 -
3*a*bˆ3 + 2*bˆ4 - (aˆ2*b - 3*a*bˆ2 + 2*bˆ3)*c)*m)/(aˆ2 - 4*a*b + 4*bˆ2)
(C-XY)ˆ2-D is of degree 4 and has roots -1/2-E, -1,0, -1/2+E True True True
↪→True

33

If n>=2 and n>=-1/2+E, than n is larger than all roots, so (C-XY)ˆ2-D<=0
↪→because
the leading coeff is negative and we can conclude.

Now we show that d := y0 − y1 ≤ min(a2/(2b− a), b− 1) is sufficient to show that the partial
derivative at i = n− k is non-positive.

[8]: print('We want to show that d/dy (logp(x,y)+logp(y,z))(x=b,y=b,z=b-d) <= 0
↪→for d <= min(X, b-1)')

F = -(2*a^4 - 4*a^3 - (a^3 - 4*a^2 + 5*a - 2)*d^2 + 2*a^2 - (2*a^4 - 7*a^3 +
↪→9*a^2 - 4*a)*d)

G = (a^4 - (a^3 - a^2)*d^2 - 2*(a^4 - a^3)*d)
print 'We have d/dy (logp(x,y)+logp(y,z))(x=b,y=b,z=b-d) = F/G with'
print 'F=', F
print 'G=', G
print (dlydy(x=b,y=b,z=b-d)(b=a^2/(4*a-4)).simplify_full()-F/G).is_zero()
print 'We first show that G > 0. Note that G is decreasing in d>0.'
print 'If a < 4/3, then b>a and thus d <= a^2/(2*b-a) < a^2/(2*a-a) = a.'
print 'We get G >= G(d=a) > 0 in the interval', solve([G(d=a)>0], a)[1]
print 'If a >= 4/3, then b<=4/3 and thus d <= b-1 <= 1/3. '
print 'We get G >= G(d=1/3) > 0 in the interval', solve([G(d=1/3)>0], a)[2]
print 'Note that F is of degree 2 with roots X and a/(a-1)', F(d=X)(b=a^2/
↪→(4*a-4)).is_zero(), F(d=a/(a-1)).is_zero()

print 'F has leading coefficient (a^3 - 4*a^2 + 5*a - 2) which is negative
↪→in the interval', solve([(a^3 - 4*a^2 + 5*a - 2)<0],a)[1]

print 'As d <= min(X, b-1) <= min(X, a/(a-1)) is smaller than both roots in
↪→the interval', solve([a^2/(4*a-4)-1 < a/(a-1)], a)[1],'we have F(d) <= 0
↪→and we can conclude.'

We want to show that d/dy (logp(x,y)+logp(y,z))(x=b,y=b,z=b-d) <= 0 for d <=
min(X, b-1)
We have d/dy (logp(x,y)+logp(y,z))(x=b,y=b,z=b-d) = F/G with
F= -2*aˆ4 + 4*aˆ3 + (aˆ3 - 4*aˆ2 + 5*a - 2)*dˆ2 - 2*aˆ2 + (2*aˆ4 - 7*aˆ3 +
↪→9*aˆ2
- 4*a)*d
G= aˆ4 - (aˆ3 - aˆ2)*dˆ2 - 2*(aˆ4 - aˆ3)*d
True
We first show that G > 0. Note that G is decreasing in d>0.
If a < 4/3, then b>a and thus d <= aˆ2/(2*b-a) < aˆ2/(2*a-a) = a.
We get G >= G(d=a) > 0 in the interval [a > 0, a < (4/3)]
If a >= 4/3, then b<=4/3 and thus d <= b-1 <= 1/3.
We get G >= G(d=1/3) > 0 in the interval [a > 0]
Note that F is of degree 2 with roots X and a/(a-1) True True
F has leading coefficient (aˆ3 - 4*aˆ2 + 5*a - 2) which is negative in the
interval [a > 1, a < 2]
As d <= min(X, b-1) <= min(X, a/(a-1)) is smaller than both roots in the
interval [a > 1, a < 2*sqrt(3) + 4] we have F(d) <= 0 and we can conclude.

34

A.5 Proposition (Low-memory asymptotics)

[9]: A.<z> = AsymptoticRing(growth_group='z^QQ', coefficient_ring=ZZ);
a = 1+1/z
b = a^2/(4*a-4)
n = -1/2 + sqrt((4*b-a)^2-8*(2*b-a))/(2*a)
print'asymptotic cost with c=1 as a=1+eps for eps = 1/z -> 0.'
print'n - 1/(2*eps) + O(1) = ', n - 1/2*z + O(z^0)
print'So (a/(2-a))^n = ((1+eps)/(1-eps))^(1/(2*eps)) = e + O(eps)'
print'1-(2*n*(a-1))/(2-a) - 2*eps + O(eps^2) = ', (1-(2*n*(a-1))/(2-a)) - 2/
↪→z + O(1/z^2)

print'So success probability ~(2*e*eps)^(d/2)'

asymptotic cost with c=1 as a=1+eps for eps = 1/z -> 0.
n - 1/(2*eps) + O(1) = O(1)
So (a/(2-a))ˆn = ((1+eps)/(1-eps))ˆ(1/(2*eps)) = e + O(eps)
1-(2*n*(a-1))/(2-a) - 2*eps + O(epsˆ2) = O(zˆ(-2))
So success probability ~(2*e*eps)ˆ(d/2)

35

